|
|
  |
Операция обратная к "скользящему среднему" |
|
|
|
Jan 8 2014, 16:19
|
.
     
Группа: Участник
Сообщений: 4 005
Регистрация: 3-05-06
Из: Россия
Пользователь №: 16 753

|
Цитата(_pv @ Jan 8 2014, 22:17)  но ничего оно нелинейно не искажает. Выше дописал. D задаёт интервал, на котором будут искажаться некратные интервалу частоты, причём и выше 1 и ниже. У меня еденичный импульс вылез в области Fs/2D. (PS на коротком интервале) Хотя вопрос встанет - как считать. Если при восстановлении сигнала требуется таки визуальное приближение к оригиналу как достоверность оценки, то плохо дело. А если оценкой будет результат вроде БПФ, то это другой разговор. Спектр по БПФ очень интересная вещь, к тому же двумерная. Может как-то на относительно коротких последовательностях (2..10 раз выше D) можно попытаться минимизировать искажение фазы. Но если сигнал в дальнейшем как-то узкополосно фильтруется, то смысла нет. Не обозначено же что за входной сигнал и как он потом используется. Если каждый его элемент потом умножается на другой сигнал, то обратная от усреднения функция должна приближать к оригиналу именно одномерный сигнал, а не двумерный спектр.
Сообщение отредактировал GetSmart - Jan 8 2014, 17:40
--------------------
Заблуждаться - Ваше законное право :-)
|
|
|
|
|
Jan 8 2014, 17:21
|

Эксперт
    
Группа: Свой
Сообщений: 1 467
Регистрация: 25-06-04
Пользователь №: 183

|
QUOTE (thermit @ Jan 8 2014, 16:25)  Дык, если задаться вопросом "что можно сделать если неизвестны фаза/начальные условия/длина итд?" то ответ тут однозначен - ничего. Именно это и имели ввиду местные телепаты. Объясняется этот факт наличием нулей в частотной характеристике однородного фильтра. Скомпенсировать их можно только полюсами, что в свою очередь требует полной когерентности последовательностей. Так что все фантазии на эту тему останутся фантазиями (реверанс в сторону AndrewN) и не более того. В присутствии шума ничем нельзя эти нули компенсировать. А шум присутствует всегда и он обязательно разнесет достаточно длинную последовательность, отфильтрованую фильтром на границе устойчивости ( есть один случай когда такая фильтрация устойчива - это только тогда когда физический и вычислительный шум отсутствует, а именно, когда и интегрирование и дифференцирование ведется в цифре в целых значениях без округлений) Но возможно построить достаточно хороший фильтр, например, винеровский. Как выше уже говорили , он должен вести себя как обратный, там где сигнал доминирует, и обнулять все там где доминирует шум. Матлаб умеет строить такие фильтры с частотной характеристикой примерно обратного синка, поскольку он умеет строить фильтры с примерно любой заданной частотной характеристикой
|
|
|
|
|
Jan 8 2014, 17:29
|
Знающий
   
Группа: Участник
Сообщений: 781
Регистрация: 3-08-09
Пользователь №: 51 730

|
Цитата fontp: В присутствии шума ничем нельзя эти нули компенсировать. А шум присутствует всегда и он обязательно разнесет достаточно длинную последовательность, отфильтрованую фильтром на границе устойчивости.
о возможно построить достаточно хороший фильтр, например, винеровский. Как выше уже говорили , он должен вести себя как обратный, там где сигнал доминирует, и обнулять все там где доминирует шум. Матлаб умеет строить такие фильтры с характеристикой обратного синка примерно С этим никто не спорит. Речь, однако, о точном восстановлении не очень длинных последовательностей.
|
|
|
|
|
Jan 9 2014, 15:16
|
.
     
Группа: Участник
Сообщений: 4 005
Регистрация: 3-05-06
Из: Россия
Пользователь №: 16 753

|
Цитата(rudy_b @ Jan 9 2014, 19:18)  Да, согласен. Если дважды подряд повториться одинаковая последовательность отсчетов длиной N сумма тоже не будет изменяться. Вероятность мала, но есть. Там для счастья не хватает 2N+1 неизвестный элемент исходника. И алгоритм скользящего без потерь, что легко делается. Пока есть идея взять для стартового поиска элементы с выхода скользящего, как реально приближённое значение к оригиналу. По формуле получается, что известны зависимости между крайними элементами фильтра. Т.о. можно итеративно "раздвигать" их в нужную сторону, одновременно соблюдая постоянную составляющую (т.к. точно известно среднее арифметическое этой и соседних к ней точек). Мелкими шагами, к примеру по 1/20 от отклонения. Есть вероятность, что результат будет сходиться к оригиналу.
--------------------
Заблуждаться - Ваше законное право :-)
|
|
|
|
|
Jan 9 2014, 20:29
|
Знающий
   
Группа: Свой
Сообщений: 888
Регистрация: 25-09-08
Из: Питер
Пользователь №: 40 458

|
Т.е. получается как с алиасом. Среднее по N точкам будет нормально передавать частоты с периодом >= 2N, далее - спады до нуля на частотах с периодом N, N/2, N/3 и т.д. Т.е. что-то правдоподобное можно выжать до первого нуля (период - N), т.е. до удвоенной частоты, а дальше будет каша с полной неопределенностью.
А, с другой стороны, ежели однократно узнать все N членов, то можно восстановить исходные отсчеты точно, т.е. все частоты до периода в 2 такта. Интересная ситуация.
|
|
|
|
|
Jan 10 2014, 08:16
|
.
     
Группа: Участник
Сообщений: 4 005
Регистрация: 3-05-06
Из: Россия
Пользователь №: 16 753

|
Цитата(rudy_b @ Jan 10 2014, 02:29)  Т.е. получается как с алиасом. Среднее по N точкам будет нормально передавать частоты с периодом >= 2N, далее - спады до нуля на частотах с периодом N, N/2, N/3 и т.д. Т.е. что-то правдоподобное можно выжать до первого нуля (период - N), т.е. до удвоенной частоты, а дальше будет каша с полной неопределенностью. Если считать, что сигнал был негармонический, то определённость более чем достаточная. Эффект алиасов имеет смысл именно к гармоническим сигналам. У негармонических должна быть мера оценки только приближение одномерного результата к исходнику. Что такое алиас применительно к одномерному негармоническому сигналу? Или если сигнал широкополосный и далее умножается/сворачивается с широкополосным сигналом совсем с другими характеристиками. Широкополосные аналоговые фильтры тоже не заточены на ограничения в гармоническом сигнале по сетке дискретизации. Но лучше сразу "договориться", что если источник информации о сигнале является одномерным, то вне зависимости от того, гармонический сигнал или нет, единственный достоверный критерий оценки (и восстановленного тоже) сигналов - их похожесть в одномерном виде. Причём даже спектральное сравнение корректно восстановленного сигнала будет совпадать с оригиналом. Появится вопрос "а был ли мальчик?". Или про суслика. Отличия каждого соседнего элемента исходника в результате скользящего среднего, особенно без потерь, остаются. То есть воссоздание каждого элемента - возможно, с небольшим сглаживанием, чтобы обрезать (в т.ч. паразитную) Fs/2. А по НЧ/постоянке вся информация сохранилась.
Сообщение отредактировал GetSmart - Jan 10 2014, 13:01
--------------------
Заблуждаться - Ваше законное право :-)
|
|
|
|
Guest_TSerg_*
|
Jan 10 2014, 10:35
|
Guests

|
ТС проговорился, что "есть некие измерения при которых датчик своими конечными размерами усредняет показания по своему объёму", а это совсем не скользящее среднее. Собственно, ничего нового в компенсации инерционности датчиков нет - этот прием достаточно часто используется, к примеру, в терморегулирующей аппаратуре для компенсации инерционности термопар. Вопрос, как и всегда, в степени "похожести" восстановленного сигнала, да еще если канал с помехами.
|
|
|
|
|
  |
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0
|
|
|