реклама на сайте
подробности

 
 
 
Reply to this topicStart new topic
> Алгоритмы измерения ФЧХ
maxis
сообщение Feb 26 2015, 08:44
Сообщение #1


Участник
*

Группа: Участник
Сообщений: 67
Регистрация: 2-06-09
Пользователь №: 49 843



Есть микроконтроллер, к которому по i2s подключен динамик и микрофон (с одним мастер клоком). Необходимо снять АЧХ и ФЧХ системы ЦАП-динамик-среда-микрофон-АЦП на диапазоне 20 - 20000Гц.
С АЧХ всё более менее понятно, генерим белый шум, от принимаемого и передаваемого сигнала считаем Фурье, делим и строим график.
А вот с ФЧХ вопрос. Первое решение которое пришло в голову - генерим сигнал из синусов с дискретом изменения частоты по одному герцу на период, на входящем сигнале считаем время всех переходов через ноль и соответственно определяем таким образом задержку(фазу) каждой частоты.
Может существуют более быстрые и точные алгоритмы снятия ФЧХ?
Go to the top of the page
 
+Quote Post
andyp
сообщение Feb 26 2015, 09:29
Сообщение #2


Местный
***

Группа: Участник
Сообщений: 453
Регистрация: 23-07-08
Пользователь №: 39 163



Цитата(maxis @ Feb 26 2015, 11:44) *
Есть микроконтроллер, к которому по i2s подключен динамик и микрофон (с одним мастер клоком). Необходимо снять АЧХ и ФЧХ системы ЦАП-динамик-среда-микрофон-АЦП на диапазоне 20 - 20000Гц.
С АЧХ всё более менее понятно, генерим белый шум, от принимаемого и передаваемого сигнала считаем Фурье, делим и строим график.
А вот с ФЧХ вопрос. Первое решение которое пришло в голову - генерим сигнал из синусов с дискретом изменения частоты по одному герцу на период, на входящем сигнале считаем время всех переходов через ноль и соответственно определяем таким образом задержку(фазу) каждой частоты.
Может существуют более быстрые и точные алгоритмы снятия ФЧХ?


Можно использовать широкополосный сигнал с хорошими автокорреляционными свойствами для получения оценки импульсной характеристики, скажем, оптимальной в среднеквадратическом смысле. АЧХ и ФЧХ можно будет получить обратным преобразованием Фурье от ИХ.
Go to the top of the page
 
+Quote Post
maxis
сообщение Feb 26 2015, 11:18
Сообщение #3


Участник
*

Группа: Участник
Сообщений: 67
Регистрация: 2-06-09
Пользователь №: 49 843



Цитата(andyp @ Feb 26 2015, 12:29) *
Можно использовать широкополосный сигнал с хорошими автокорреляционными свойствами для получения оценки импульсной характеристики, скажем, оптимальной в среднеквадратическом смысле. АЧХ и ФЧХ можно будет получить обратным преобразованием Фурье от ИХ.

Ну импульсную характеристику можно вероятно получить как реакцию на дельта-функцию Дирака. При этом частота дискретизации у нас 48кГц, так что её спектр будет равномерный до 22кГц, тут всё нормально. Но если после мк будет стоять фильтр с бесконечной импульсной характеристикой то по идее импульсная характеристика так же будет бесконечной. Что мы получим в этом случае? Просто меньшую точность?

Не напомните как именно получить АЧХ и ФЧХ из ИХ?
Go to the top of the page
 
+Quote Post
Fat Robot
сообщение Feb 26 2015, 11:22
Сообщение #4


ʕʘ̅͜ʘ̅ʔ
*****

Группа: Свой
Сообщений: 1 008
Регистрация: 3-05-05
Пользователь №: 4 691



Конечно!

Цитата(maxis @ Feb 26 2015, 12:18) *
Не напомните как именно получить АЧХ и ФЧХ из ИХ?


Ну и вот здесь еще по основному вопросу.
http://uk.mathworks.com/help/dsp/ug/lms-ad...rs.html#f1-5753
Go to the top of the page
 
+Quote Post
petrov
сообщение Feb 26 2015, 13:24
Сообщение #5


Гуру
******

Группа: Свой
Сообщений: 2 220
Регистрация: 21-10-04
Из: Balakhna
Пользователь №: 937



Цитата(maxis @ Feb 26 2015, 14:18) *
Ну импульсную характеристику можно вероятно получить как реакцию на дельта-функцию Дирака. При этом частота дискретизации у нас 48кГц, так что её спектр будет равномерный до 22кГц, тут всё нормально.


С дельта-функцией возникает проблема формирования импульса достаточной энергии. Лучше использовать CAZAC последовательность, которая позволяет точно измерить конечную ИХ.

Цитата(maxis @ Feb 26 2015, 14:18) *
Но если после мк будет стоять фильтр с бесконечной импульсной характеристикой то по идее импульсная характеристика так же будет бесконечной. Что мы получим в этом случае? Просто меньшую точность?


Вот и проверьте, обрежьте ИХ БИХ фильтра, постройте ЧХ полученного КИХ фильтра, обрежьте дальше повторите и сравните.


Ещё вариант решения - по шуму адаптивным фильтром идентифицировать.
Go to the top of the page
 
+Quote Post
_pv
сообщение Feb 26 2015, 14:19
Сообщение #6


Гуру
******

Группа: Свой
Сообщений: 2 563
Регистрация: 8-04-05
Из: Nsk
Пользователь №: 3 954



Цитата(maxis @ Feb 26 2015, 15:44) *
С АЧХ всё более менее понятно, генерим белый шум, от принимаемого и передаваемого сигнала считаем Фурье, делим и строим график.

после того как Фурье посчитали, берите не модуль (Im^2+Re^2)^0.5, а фазу atan(Im/Re) для обоих сигналов и вычитайте их друг из друга.
Go to the top of the page
 
+Quote Post
Hose
сообщение Feb 27 2015, 07:02
Сообщение #7


Частый гость
**

Группа: Участник
Сообщений: 82
Регистрация: 7-01-15
Пользователь №: 84 450



На правах неквалифицированного бреда:
Фчх и правда тяжело мерить. Часто интересна не сама фчх а ее нелинейность, тоесть гвз ( скорость изменения фазы). Требуется значитено большая разрядность чем для ачх. Ресурс для фурье может удивить. Выше требования к линейности и шуму. Возможно придется сканировать модулированными синусами для получения необходимой точности.
Посмотрите в сторону прямого измерния скорости изменения фазы, это производная от фчх. Далее ее можно будет пересчитать в фчх. Дискретная производная это приращение функции/ приращение аргумента, тоесть разница фаз в 2-х точках делить на шаг по часоте.

Интересно как вы планируете калибровать микрофон, каких размеров нужна безэховая камера и как будет влиять уменьшение ее размера?

Я так думаю, измерения фчх динамика по шуму или дельтафункции может оказаться некорректным для высоких точностей, поскольку при одновременном воспроизведении низкий и высокой часоты геометрически стартовая точка для высоких частот будет смещаться.
Go to the top of the page
 
+Quote Post
maxis
сообщение Feb 27 2015, 11:48
Сообщение #8


Участник
*

Группа: Участник
Сообщений: 67
Регистрация: 2-06-09
Пользователь №: 49 843



_pv, Спасибо, так и поступлю.

Hose, я думаю мне таких точностей и не нужно будет. Устройство будет многоканальным аудиопроцессором, , с помощью которого как раз и можно будет сделать фазу линейной, а ачх максимально ровной в точке прослушивания, расчёт АЧХ и ФЧХ нужны только для визуализации и более удобной настройки.
Тоесть прибор не измерительный, но требует большую скорость измерений.
Микрофон будет использоваться настроечный, уже калиброванный производителем. Хотя как мне кажется для этой задачи пойдёт и обычный WM-61.
Про метод прямого измерения скорости изменения фазы ничего не нашёл, не могли бы в двух словах описать его, или написать как он называется за рубежом?
Go to the top of the page
 
+Quote Post
Hose
сообщение Feb 28 2015, 04:44
Сообщение #9


Частый гость
**

Группа: Участник
Сообщений: 82
Регистрация: 7-01-15
Пользователь №: 84 450



Я понятия не имею как называется этот метод и приминяется ли он в мировой практике:
Диапазон сканируется модулированным сигналом. Сигнал рождается на квадратурном модуляторе, модулирующее колебание, например, синус. В случае с синусом на выходе имее те две частотные составляющие рядом. Прогоняете через вашу систему, подаете на квадратурный смеситель, получаете два канала ( ре, им) вычисляете разницу фаз между ними. Это приращение функции. Разница между ними по частоте - приращение аргумента. Шагать по диапазону и модулировать целесообразно с гелинейным шагом, поскольку отображение всеравно в логарифм. шкале.
Go to the top of the page
 
+Quote Post
Alexey Lukin
сообщение Mar 3 2015, 17:50
Сообщение #10


Частый гость
**

Группа: Участник
Сообщений: 159
Регистрация: 3-01-11
Пользователь №: 62 000



Более распространенный тестовый сигнал — chirp (плавающий синус). В отличие от дельта-импульса, у него высокая энергия в течение продолжительного времени, что улучшает сигнал/шум. В отличие от CAZAC, у него легко отделить нелинейные искажения от линейных (они лежат выше на спектрограмме) и эховый отклик помещения от неравномерности АЧХ/ФЧХ (он лежит позже по времени на спектрограмме). Из записанного chirp делается деконволюция (путем свертки с развернутым по времени chirp) для восстановления импульсного отклика.
Go to the top of the page
 
+Quote Post
petrov
сообщение Mar 3 2015, 19:23
Сообщение #11


Гуру
******

Группа: Свой
Сообщений: 2 220
Регистрация: 21-10-04
Из: Balakhna
Пользователь №: 937



Цитата(Alexey Lukin @ Mar 3 2015, 20:50) *
В отличие от CAZAC


Хорошие чирпы тоже свойством CAZAC обладают.

Цитата(Alexey Lukin @ Mar 3 2015, 20:50) *
В отличие от CAZAC, у него легко отделить нелинейные искажения от линейных (они лежат выше на спектрограмме) и эховый отклик помещения от неравномерности АЧХ/ФЧХ (он лежит позже по времени на спектрограмме). Из записанного chirp делается деконволюция (путем свертки с развернутым по времени chirp) для восстановления импульсного отклика.


ИМХО Наоборот это недостаток чирпов, нелинейные искажения разные бывают, например низкочастотная амплитудная модуляция. Лучше когда нелинейные продукты не концентрируются по частоте, а размазаны как шум.
Go to the top of the page
 
+Quote Post
ig_z
сообщение Mar 3 2015, 19:29
Сообщение #12


Местный
***

Группа: Свой
Сообщений: 437
Регистрация: 27-08-04
Пользователь №: 551



QUOTE (Alexey Lukin @ Mar 3 2015, 19:50) *
Более распространенный тестовый сигнал — chirp (плавающий синус). В отличие от дельта-импульса, у него высокая энергия в


Позволю себе дополнить. Теория изложена в трудах Фарино. Пример реализации идеи с экспоненциальным chirp-ом:
http://gaydenko.com/qloud/

Единственный открытый вопрос - точный расчет fade in, fade out времен. Как я понимаю, форма fade in, fade out есть оконная функция, возможно с экспоненциальным изменением во времени как и у chirp-а. Длительность fade in, fade out зависит от скорости изменения частоты в chirp-е
Go to the top of the page
 
+Quote Post
khach
сообщение Mar 4 2015, 10:06
Сообщение #13


Гуру
******

Группа: Свой
Сообщений: 3 439
Регистрация: 29-12-04
Пользователь №: 1 741



Или квадартурный самплинг на частоте в 4 раза большей чем частота сигнала, тогда математика определения фазы очень простая, или sine fit (метод наименьших квадратов) для двух синусов -опорного и измеренного, при этом частота- общий параметр, а амплитуды, фазы и сдвиг по постоянке- для каждого синуса свои. Метод 4 или 7 параметров (Four-parameter sine wave fitting, dual sine wave fitting)
Go to the top of the page
 
+Quote Post
Alexey Lukin
сообщение Mar 15 2015, 15:16
Сообщение #14


Частый гость
**

Группа: Участник
Сообщений: 159
Регистрация: 3-01-11
Пользователь №: 62 000



Цитата(petrov @ Mar 3 2015, 22:23) *
Хорошие чирпы тоже свойством CAZAC обладают.

Согласен. Но в акустических измерениях я предпочитаю, чтобы чирп спадал 3 дБ/окт. Иначе либо твитеры спалятся, либо С/Ш на НЧ будет недостаточно.


Цитата(petrov @ Mar 3 2015, 22:23) *
ИМХО Наоборот это недостаток чирпов, нелинейные искажения разные бывают, например низкочастотная амплитудная модуляция. Лучше когда нелинейные продукты не концентрируются по частоте, а размазаны как шум.

Наверное действительно зависит от искажений. В акустических измерениях, по-моему, доминируют именно гармонические искажения акустики. И от них в процессе получения импульса желательно избавиться.
Go to the top of the page
 
+Quote Post

Reply to this topicStart new topic
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 


RSS Текстовая версия Сейчас: 25th June 2025 - 07:35
Рейтинг@Mail.ru


Страница сгенерированна за 0.01503 секунд с 7
ELECTRONIX ©2004-2016