|
|
  |
Ошибка в теореме Котельникова ? |
|
|
|
Jan 19 2009, 17:59
|
Местный
  
Группа: Свой
Сообщений: 445
Регистрация: 7-02-05
Из: Зеленоград
Пользователь №: 2 468

|
Цитата Любой фильтр, независимо от физической реализации осуществляет свертку сигнала со своей передаточной характеристикой, после чего информация о фазе гармонических составляющих исходного сигнала будет безвозвратно утеряна. Вокодер не восстанавливает исходный сигнал, он конструирует сигнал, похожий на исходный. С потерей информации, есс-но. А ФЧХ фильтра зачем? Фаза не теряется безвозвратно - просто она некоторым образом меняется. Более того, этим изменением просто пренебрегают, т.к. оно несущественно. Было бы существенно - рассчитывали бы из этих условий. Цитата Причем похожесть определяется чисто субъективно. То же касается всех алгоритмов "сжатия"- МП и тому подобных. Правильно, т.к. сознательно выбрасывают несущественные компоненты (несущественные, с т.з. распознавания речи). Если бы этих компонент не было бы - все однозначно бы складывалось (ну конечно, фазы цепей пришлось бы подбирать). Цитата При равенстве fв и Fs/2 наблюдается смыкание краев реплик спектра исходного сигнала на частоте fв. Даже фильтр "Кирпичная стена", физически не реализуемый, имеет неопределенное значение своей АЧХ на этой частоте. Для теоретически восстанавливаемого сигнала - частота сигнала должна быть в 2 раза меньше. Нет там, и не планируется разрыв. Вот если у Вас сигнал 1Гц (прямо строго), то имея частоту дискр. 2Гц (строго 2Гц) есть шанс восстановить исходный сигнал. А вот имея частоту 1,99Гц. - восстановить можно только относительно небольшой промежуток и ошибка будет накапливаться. При рассмотрении сигнала в безграничных временнЫх пределах - этот сигнал НЕВОССТАНАВЛИВАЕМЫЙ. Вот и все. В чем противоречие?
|
|
|
|
|
Jan 19 2009, 19:09
|
deleted
   
Группа: Свой
Сообщений: 555
Регистрация: 28-08-05
Пользователь №: 8 024

|
Мужики, мы ж не в верховной раде, чи там, в думе... Есть формулировка и есть какое то доказательство, это ж математика, а не законы и правила -к-рые можно передергивать. Посмотрите теорему КошИ например, - все четко и ясно, а тут, даже в первом приближении- теотрема не работает. Все это было "узаконено" в протИву Шеннону-типа, и мы не лыком шиты,-это не есть истина, да и не теорема это-в смысле Котельникова. Пусть он и заслуженный товарисчь- но не математик, просто- "заслуженный чиновник от науки" тогО времени. ЗЫ, ну и, вам привели "примитивную синусоиду" спектр ее известен, что можно сказать ? без всяких заумностей с преобразованиями Фурье?
|
|
|
|
|
Jan 19 2009, 19:56
|
Местный
  
Группа: Свой
Сообщений: 445
Регистрация: 7-02-05
Из: Зеленоград
Пользователь №: 2 468

|
Цитата(Designer56 @ Jan 19 2009, 21:06)  прочтите сами внимательно- у вас везде противоречия Ну укажите мне на них. Только конкретнее. Я эту теорему знаю не первый год и не вижу в ней противоречий. Все нормально в ней. Все эти спектры, фазы и пр. - это обыкновенное разложение какой-либо функции в ряд Фурье (таких рядов много и Фурье - один из множества). У рядов есть целая теория - целый раздел математики. Вот там есть некоторые противоречия. В ТК - я их не вижу. Конечно математика не идеальная наука: если пытаться складывать прямоульный импульс (или даже меандр) из спектра - на каждом фронте будет артефакт (который можно сделать любой минимально желаемой длительности). Но это феномен ряда Фурье, а не ТК. Цитата(INT1 @ Jan 19 2009, 22:09)  ЗЫ, ну и, вам привели "примитивную синусоиду" спектр ее известен, что можно сказать ? без всяких заумностей с преобразованиями Фурье? Котельников на самом деле умный мужик был (академик), да и математика - строгая наука (что не отменяет в ней некоторые парадоксальные феномены). Да, есть синусоида: берем частоту в два раза больше и дискретизуем. При определенном сдвиге фаз - мы сможем ее восстановить с нулевой погрешностью. Берем частоту в 1,5 раза больше частоты синусоиды: при ЛЮБОМ сдвиге фаз - мы 100% ее не восстановим. Всё. Это как раз и хотел сказать Котельников своей теоремой.
|
|
|
|
|
Jan 19 2009, 20:24
|
deleted
   
Группа: Свой
Сообщений: 555
Регистрация: 28-08-05
Пользователь №: 8 024

|
2Atridies ,я никак не хочу обидеть ни Котельникова , ни его заслуги. Но математика - точная наука, как и физика, и не предполагает что то навроде закона в первом чтении втором, и т.д. "Хотел сказать"- это уже двусмысленность, это уже ,-не математика. ЗЫ, а вобщето, если говорить о спектре, что и выше и было сказано,то тут тоже работает "принцип неопределенности", чем короче время его определения(измерения), тем меньше мы можем сказать, как он "выглядит".
|
|
|
|
|
Jan 19 2009, 21:16
|
рядовой
     
Группа: Участник
Сообщений: 2 811
Регистрация: 21-08-06
Пользователь №: 19 713

|
Цитата(INT1 @ Jan 19 2009, 22:09)  Мужики, мы ж не в верховной раде, чи там, в думе... Есть формулировка и есть какое то доказательство, это ж математика, а не законы и правила -к-рые можно передергивать. Посмотрите теорему КошИ например, - все четко и ясно, а тут, даже в первом приближении- теотрема не работает. Все это было "узаконено" в протИву Шеннону-типа, и мы не лыком шиты,-это не есть истина, да и не теорема это-в смысле Котельникова. Пусть он и заслуженный товарисчь- но не математик, просто- "заслуженный чиновник от науки" тогО времени. Котельников не был математиком - это верно, но и чиновником тоже не был. На момент написания статьи он был инженером, так и подписался - "инженер Котельников". Так Вы хотели что-то о его теореме сказать (кстати, - какой именно?). Мы Вас внимательно слушаем. Цитата(INT1 @ Jan 19 2009, 22:09)  ЗЫ, ну и, вам привели "примитивную синусоиду" спектр ее известен, что можно сказать ? без всяких заумностей с преобразованиями Фурье? Продолжаем внимательно слушать. Очень хоцца узнать, как выглядит спектр "примитивной синусоиды". Заодно, если не трудно, - спектр сигнала постоянного уровня.
|
|
|
|
|
Jan 20 2009, 05:31
|
deleted
   
Группа: Свой
Сообщений: 555
Регистрация: 28-08-05
Пользователь №: 8 024

|
2 wim теорема должна быть поставлена так, чтобы к ней нельзя было придраться. Необходимость выполняется, а достаточность-нет. Формалист я, вот и придираюсь  .
|
|
|
|
|
Jan 20 2009, 05:44
|
Гуру
     
Группа: Свой
Сообщений: 3 106
Регистрация: 18-04-05
Пользователь №: 4 261

|
Цитата(rudy_b @ Jan 20 2009, 04:01)  Например точное определение частоты синусоидального сигнала и его фазы на конечной выборке при некратных частотах выборки. Очень интересный вопрос, по которому написано-то много, но не сказано почти ничего конкретного. Мы столкнулись с этой задачкой и даже научились ее решать с высокой точностью (на уровне 10^-4-10^-5), но - практически. Внятного теоретического ответа найти не смогли. Может кто-то подскажет? А этого: http://electronix.ru/forum/index.php?s=&am...st&p=402753 - не достаточно? Или этого: http://electronix.ru/forum/index.php?showt...mp;#entry339537 - для фазы?
Сообщение отредактировал blackfin - Jan 20 2009, 05:45
|
|
|
|
|
Jan 20 2009, 07:55
|
Гуру
     
Группа: Свой
Сообщений: 3 020
Регистрация: 7-02-07
Пользователь №: 25 136

|
Цитата(INT1 @ Jan 20 2009, 08:31)  2 wim теорема должна быть поставлена так, чтобы к ней нельзя было придраться. Необходимость выполняется, а достаточность-нет. Формалист я, вот и придираюсь  . Пожалуйста. Коль скоро в формулировке теоремы речь идёт о спектре сигнала, значит подразумевается, что этот спектр существует. В математически строгих формулировках обычно так и пишут: "если функция непрерывная, абсолютно интегрируемая, и т.д. и т.п., то ...". Выше неоднократно упоминалось, что у бесконечной синусоиды спектр не существует, и строгая формулировка синусоиду отсеет сразу. Следовательно, про такой сигнал теорема ничего не может сказать. Всё.
|
|
|
|
|
Jan 20 2009, 09:03
|
.
     
Группа: Участник
Сообщений: 4 005
Регистрация: 3-05-06
Из: Россия
Пользователь №: 16 753

|
Цитата(wim @ Jan 19 2009, 01:55)  ТК применяется не к отсчетам, а к функциям, имеющим спектр, т.е. интегрируемым. Непрерывный синусоидальный сигнал к таковым не относится, соответственно и ТК к нему неприменима. Впрочем, если хотите, можете попрактиковаться в рисовании спектра оного синуса, тока будьте осторожны - дельта-функция уходит в бесконечность, как бы в глазик кому не ширнуть.  Глупость. Дельта-функция вырождается в натуральное число. Точнее в комплексное. Спектр синусоидального сигнала (множества синусоид) по бесконечности - множество чисел, содержащих частоту, фазу и амплитуду. Цитата(scifi) Похоже, тов. GetSmart не очень знаком с дельта-функциями. А ты вообще не вякай  Цитата(rudy_b) Я бы сказал, что суть понятна и споры о точной формулировке теоремы Котельникова полезны только с учебной точки зрения.
При использовании Фурье возникает очень много гораздо более интересных (и необходимых на практике) нюансов в области его практического использования. Например точное определение частоты синусоидального сигнала и его фазы на конечной выборке при некратных частотах выборки. Очень интересный вопрос, по которому написано-то много, но не сказано почти ничего конкретного. Мы столкнулись с этой задачкой и даже научились ее решать с высокой точностью (на уровне 10^-4-10^-5), но - практически. Внятного теоретического ответа найти не смогли. Может кто-то подскажет? Споры полезны именно для практического применения. С тривиальной задачкой, связанной с ТК вы столкнулись. Это т.н. "нулевой уровень". Теперь столкнитесь с задачкой отделения (выяснения спектра) для двух некратных частот в конечном множестве отсчётов. Обычно некратная частота попадается с вероятностью 1. Потом отпишитесь о результате. И продолжим обсуждать ТК.
--------------------
Заблуждаться - Ваше законное право :-)
|
|
|
|
|
Jan 20 2009, 10:56
|
рядовой
     
Группа: Участник
Сообщений: 2 811
Регистрация: 21-08-06
Пользователь №: 19 713

|
Цитата(andran25 @ Jan 20 2009, 02:00)  Раз уж я начал эту тему, то постараюсь внести ясность. Поскольку я не нашел в интернете ответа на данный вопрос, то написал небольшую статью, где постарался математически объяснить в чем проблема. Статью можно найти здесь: http://andyplekhanov.narod.ru/science/kotelnikov_bug.pdfили на моей страничке, посвященной науке: http://andyplekhanov.narod.ru/science/sci.htmХотелось бы услышать отзывы. Это, собс-но, предложение (одно из оных) по расширению области применимости ТК на обобщенные функции. Однако, условие S(w1)=0 фактически предполагает применимость к функции преобразования Фурье. И в таком виде оно практически бесполезно, поскольку известны достаточные условия применимости преобразования Фурье. Если говорить конкретно о непрерырывном синусе, то неприменимость к нему ТК имеет более фундаментальный характер, чем исходные постулаты самой ТК. Остается также вопрос терминологии - что считать частотой w1, например, для дельта-функции расположенной на нулевой частоте. Очевидно, что понятие w1 (аргумент функции) должно быть определено до того, как будет вычислена функция от этого аргумента.
|
|
|
|
|
  |
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0
|
|
|