|
|
  |
Ошибка в теореме Котельникова ? |
|
|
|
Jan 20 2009, 12:26
|
Знающий
   
Группа: Свой
Сообщений: 888
Регистрация: 25-09-08
Из: Питер
Пользователь №: 40 458

|
Цитата(GetSmart @ Jan 20 2009, 12:03)  Глупость. Дельта-функция вырождается в натуральное число. Точнее в комплексное. Спектр синусоидального сигнала (множества синусоид) по бесконечности - множество чисел, содержащих частоту, фазу и амплитуду. А ты вообще не вякай  Споры полезны именно для практического применения. С тривиальной задачкой, связанной с ТК вы столкнулись. Это т.н. "нулевой уровень". Теперь столкнитесь с задачкой отделения (выяснения спектра) для двух некратных частот в конечном множестве отсчётов. Обычно некратная частота попадается с вероятностью 1. Потом отпишитесь о результате. И продолжим обсуждать ТК. Мне показалось, что уважаемый "guru killer" заявил, что он осчастливил это обсуждение своим отсутствием. Цитата(blackfin @ Jan 20 2009, 15:18)  Окно не нужно, если измерения проводить на отрезке, кратном периоду sin. Более серьезное по первой ссылке. К сожалению, так не бывает, в этом то и проблема. Про первую ссылку. При применении любой весовой функции они бы получили намного лучшие результаты. Если важно выделить синус, то наиболее подходит гаусс, он обеспечивает разделение до 80 дБ. Спасибо за попытку помочь.
|
|
|
|
|
Jan 20 2009, 12:50
|
.
     
Группа: Участник
Сообщений: 4 005
Регистрация: 3-05-06
Из: Россия
Пользователь №: 16 753

|
Цитата(rudy_b @ Jan 20 2009, 18:26)  Мне показалось, что уважаемый "guru killer" заявил, что он осчастливил это обсуждение своим отсутствием. Ближе к делу. ЗЫ. С той поры беседа оживилась. И ещё, меня попросили остаться  ЗЗЫ. И не вешайте всем лапшу на уши про точность 10e-5. В лучшем случае на фоне слабого белого шума. В присутствии любого стороннего сигнала точность будет меньше, причём такая, о какой не писали в книжках.
Сообщение отредактировал GetSmart - Jan 20 2009, 12:59
--------------------
Заблуждаться - Ваше законное право :-)
|
|
|
|
|
Jan 20 2009, 14:05
|

.
     
Группа: Участник
Сообщений: 2 424
Регистрация: 25-12-08
Пользователь №: 42 757

|
Цитата(petrov @ Jan 20 2009, 15:46)  Можно использовать разложение по другим ортогональным функциям которые в частотной области в отличие от синков имеют большое подавление за пределами своей полосы. Смотеть Filter Banks. Можно то оно можно, только вряд-ли получится лучше. Я тут просто просимулировал восстановление 2-х перемешанных синусов 500 и 800 Гц с частотой квантования от 2 до 3 кГц. Так вот наиболее похожий результат получился после фильтра Баттерворта 4 го порядка (после дискретизатора). Чебышев 10 порядка, горааааздо хуже. а 20-го порядка совсем неважно. Жаль что синки по простому в симулятор не вставляются.
|
|
|
|
|
Jan 20 2009, 15:44
|
Гуру
     
Группа: Свой
Сообщений: 3 106
Регистрация: 18-04-05
Пользователь №: 4 261

|
Цитата(rudy_b @ Jan 20 2009, 15:26)  К сожалению, так не бывает, в этом то и проблема. Напротив, это происходит довольно часто.. Очень часто измерение физических параметров какого-либо объекта сводится к измерению АЧХ(f) и ФЧХ(f) этого объекта. Это и всевозможные дефектоскопы, и металлоискатели, и лазерные дальномеры, и классические измерители элементов матрицы рассеяния S 11, S 12, и пр.. При этом измерительный прибор является одновременно и генератором и "потребителем" тестового гармонического сигнала частота которого, ессно, выбирается самим измерительным прибором и, следовательно, известна априори. А раз так, мы всегда можем точно указать длительность отрезка времени, для которого данный гармонический сигнал будет являться одной из базисных функций на этом отрезке, и найти скалярное произведение между зондирущим гармоническим сигналом и гармоническим сигналом полученным в результате воздействия на объект, что, ессно, поволит нам вычислить искомые АЧХ(f) и ФЧХ(f) исследуемого объекта. Так что, никаких сожалений и никаких проблем..
|
|
|
|
|
Jan 20 2009, 16:49
|

Нечётный пользователь.
     
Группа: Свой
Сообщений: 2 033
Регистрация: 26-05-05
Из: Бровари, Україна
Пользователь №: 5 417

|
Цитата(Designer56 @ Jan 19 2009, 16:50)  У Баскакова теорема Котельникова высказывается так: " Произвольный сигнал, спектр которого не содержит частоты выше fв, Гц, может быть полностью восстановлен, если известны отсчетные значения этого сигнала, взятые через равные промежутки времени 1/(2fв) сек." Неплохо бы составить коллекцию формулировок ТК :-) Ф.Е.Темников и др. "Теортеические основы информационной техники", М., "Энергия", 1971 стр. 75 Цитата Если непрерывная функция f(t) удовлеворяет условию Дирихле (ограничена, кусочно-непрерывна и имеет конечное число экстремумов) её спектр ограничен частотой wm, то существует такой максимальный интервал, при котором имеется возможность безошибочно восстановить и т.д. Интервал равен 1/2f m (а не "не больше"), спектр не равен 0 в интервале -w m ... w mт.е. неравенства везде нестрогие. Но - имеет конечное число экстремумов явно не про синусоиду, причём даже "низкой" частоты (в этом смысле ограничение спектра строгим неравенством выглядит менее жёстким  ). Это в идельном мире математики. Дальше идёт текст про ограничения в реальной жизни от предсказуемости функций с ограниченным спектром до неограниченности спектра функций конечной длительности ("являющися носителями сообщений"), которые лень набирать (да и тут уже припоминалось) и бесконечное время работы идеального фильтра, заканчивающиеся таким: Цитата Приведенные замечания свидетельствуют, что применение теоремы Котельникова вызывает определённые трудности в том случае, когда она рассматривается как точное утверждение ... можно рассматривать как приближённую для функций с неограниченным спектром. и отсылка к Железнову. Цитата(777777 @ Jan 20 2009, 14:56)  Огласите весь списочек, пжлст ©. В каких книжках такое утверждается? Частота должна быть строго больше, хоть на миллионную долю. Если она равна, то восстановление невозможно по очевидным причинам, приведенным в посте #1 Вот я и огласил
--------------------
Ну, я пошёл… Если что – звоните…
|
|
|
|
|
Jan 20 2009, 17:36
|
Местный
  
Группа: Свой
Сообщений: 445
Регистрация: 7-02-05
Из: Зеленоград
Пользователь №: 2 468

|
Цитата Например точное определение частоты синусоидального сигнала и его фазы на конечной выборке при некратных частотах выборки. Очень интересный вопрос, по которому написано-то много, но не сказано почти ничего конкретного Если Фурье крутить на бесконечном отрезке (-бесконечность...+бесконечность) тогда при конечной длительности синусоиды спектр будет не прямая линия, а функция вида sin(x)/x - это известно. Если надо точно измерить - надо крутить ПФ только на отрезке реализации синусоиды. В этом случае будет одна-единственная прямая. Кроме того, для улучшения точности результатов - надо увеличить частоту дискретизации, чтобы увеличить статистику (чтобы шаг спектральных составляющих был маленьким). Теоретически, можно получить любую точность, практически - лучше 10^-6 наверное сложно будет получить, ввиду погрешностей Fдискр, шума квантования и пр.пр.пр. Цитата Выше неоднократно упоминалось, что у бесконечной синусоиды спектр не существует, и строгая формулировка синусоиду отсеет сразу Спектр бесконечной синусоиды - это просто число. # 5 Гц. Вот спектр ЧМ - это функция, а спектр синусоиды - это число. Т.е. функция не равна нулю только в оной точке. И равна она в ней - амплитуде синусоиды. Цитата А лично меня еще интересует наивысшая частота спектра сигнала постоянного уровня (никак не могу добиться ответа от актуальных товарищей). Шутить изволите На мой взгляд, ТК наверное сформулирована чуть-чуть некорректно. Такое бывает и в математике и в физике (что нисколько не умаляет вклад в науку Котельникова). Основной ее смысл: что нельзя, ни теоретически, ни практически восстановить сигнал, частота которого больше Fдискр/2. А вот если равна - сфазируйте правильно - и будет Вам счастье. Это также как и неявное следствие из линейных и нелинейных цепей: главное отличие с т.з. сигналов, что одни добавляют новые частоты в спектр, а другие - модифицируют спектр без этого.
|
|
|
|
|
  |
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0
|
|
|