QUOTE (Pechka @ Sep 27 2012, 11:27)

К чему такие споры? И так всем ясно, что раз уж эллипс имеет 5 параметров - значит необходимым условием является наличие как минимум 5 точек, чтобы решение было единственным, иначе по определению система уравнений будет иметь бесконечное множество решений. Что касается глобального минимума - нужно проверять, в численных методах обычно ищется как раз локальный минимум, а дальше, используется дополнительная информация чтобы доказать глобальность этого минмума.
Я даже не буду оспаривать математическую "ценность" подобных измышлений...
Упростите для начала задачу. Представьте, что данные раньше измерялись с погрешностями sigma_1 и sigma_2 для координат x_1 и x_2, а после того, как в измерительную систему вселился гремлин, x_1 измеряется с погрешностью 0, а x_2 с погрешностью sigma_1 + sigma_2. Задайте аналитически произвольный эллипс. Внесите погрешности (исказите) в случайный набор точек на эллипсе. Найдите параметры "измеренного" эллипса по МНК, считая, что измерительная система населена гремлином.
Если полученное решение не слишком далеко от истинного (задайте метрику), то пользуйтесь упрощённой моделью.
Если решение "далеко", увеличьте количество измерений. Если и это не помогает, то пересмотрите модель - считайте честно овал ошибки.