Цитата(des00 @ Nov 14 2014, 10:47)

Хмм, i/q как я понимаю абстракция. В моих примерах явно видно Real/Imag компоненты отсчетов.
а тут пишут Цитата
Sometimes I get the objection: "I/Q data is nice, but it's just a mathematical construction. The true signal is real".
I do not agree with this. I'd say the true signal is complex, and the real signal is an incomplete projection of it. The true signal do actually have the attributes phase and amplitude for each and every sample (i.e. time). Hence the true signal is actually not only complex, but three-dimensional: phase, amplitude and time.
Look for example at the pendulum. Its oscillations can be described as a signal. The energy of the pendulum oscillates between potential energy and kinetic energy. At any given time, to represent the state of the pendulum, you'll need to specify both its kinetic energy as well as potential energy. The kinetic as well as the potential energy are both very real (in both aspects) physical attributes of the state of the pendulum. If you leave one out, you really don't know anything about the state of the pendulum at all. E.g. to estimate the energy of the pendulum, you'd have to take a series of samples to find out the maximum, precisely the same way you'd do finding out the amplitude of a signal in real, etc. And keep in mind, if the signal is modulated, i.e. non static, nothing guarantees the amplitude stays constant in your series of samples.
The example above is not analogous to I/Q data - this example is I/Q data. Use I for kinetic energy and Q for potential energy, and there you are.
Марс - единственная планета, полностью населенная роботами (около 7 штук).