Спасибо за ответы.
Разобрался со своим вопросом.
Есть действительный шумовой процесс с Гауссовым распределением n(t). Я получал сигнал x(t) = n(t-tau) + j*H(n(t)), комплексный, т.е. с помощью преобразования Гильберта. Шум на выходе y(t) = abs(K*arg(x(t)*conj(x(t-1)))). Т.е. шум на входе имеет спектр
А pdf на выходе
Такой шум сложится с сигналом как несимметричный случайный процесс, усреднение которого даст смещение
Если же на вход подать комплексный белый шум, то pdf на выходе
И это даёт симметричный СП.
Если переделать схему так, чтобы сформировать из действительного комплексный сигнал, не изменяя шум, то можно будет применять обычное интегрирование, паразитная постоянка уходит.
А по поводу связи дисперсии шума на входе и смещения на выходе.. Сначала была идея сделать компенсацию смещения. Но смещение оказалось функцией трёх переменных - дисперсии входного шума n, центральной частоты сигнала s и его полосы. При этом сильно нелинейной. И если дисперсию шума оценить можно, то с другими параметрами уже сложнее. Так что решил, что лучше вообще исключить небелый шум.
Сообщение отредактировал serjj - Sep 22 2015, 08:28