|
Гексагональный и круглый QAM, Вопросы использования(+) |
|
|
|
May 18 2016, 06:45
|
Вечный ламер
     
Группа: Модераторы
Сообщений: 7 248
Регистрация: 18-03-05
Из: Томск
Пользователь №: 3 453

|
Доброго дня! Заинтересовался вопросом "скругления" квадратных созвездий, аналогично MIL-STD-188-110B или DVB-S2X. Вопросы реализации пока отложим, интересна теория. 1. В матлабе сделал измеритель не кодированного BER для QAM16 (в качестве эталонного) и QAM16 из 188-110B (по сути 16APSK с поворотом внешних точек на 15 градусов). И вижу что круглое созвездие проигрывает квадратному порядка 1дб на 1е-6. Связываю это с тем, что при нормировке мощности созвездия, мощность внутренних точек меньше чем в квадратном QAM. Небольшая коррекция амплитуды внутренних точек нивелирует проигрыш. Возможно дело в используемом кодере, но судя по статье 16apsk проигрывает 16qam. Вопрос собственно вот в чем. Пикфактор 16апск на ~2дб лучше чем 16кам. Какой тогда смысл увеличить мощность излучения на 2дб, но ухудшить чутье на 1 дб? Вытягивание последних соков ? 2. Эксперимент с ручной коррекцией точек созвездия, подтолкнул к следующему вопросу: при создании созвездия, каким критерием руководствоваться: 1)одинаковым евклидовым расстоянием точки до соседей; 2)минимальным количеством используемых амплитуд; 3)простотой мапера, демапера, блока расчета метрик? 3. Оптимальным по расстоянию является гексагональный QAM. Не натыкался ли кто в сети, на работы по исследованию пикфактора этого созвездия и кривых BER? Интересуют QAM до 2К. Спасибо.
Эскизы прикрепленных изображений
--------------------
|
|
|
|
|
 |
Ответов
|
May 18 2016, 10:36
|
Вечный ламер
     
Группа: Модераторы
Сообщений: 7 248
Регистрация: 18-03-05
Из: Томск
Пользователь №: 3 453

|
Цитата(petrov @ May 18 2016, 16:48)  Какие-то цифры по гексагональным созвездиям у Скляра были Спасибо, посмотрю Цитата(petrov @ May 18 2016, 16:48)  Сложности с кодированием, нет такой простой штуки как двойной Грей для гауссовских решёток, коды требуеются не бинарные, не разработана тема как следует. Ищу способы поднять коэффициент системы на старших модуляциях, перебираю разные варианты. Сложность конечно не айс, но тем не менее Цитата(Pathfinder @ May 18 2016, 17:06)  Квадратная решётка удобна ещё тем, что квадратуры можно обрабатывать независимо: код Грея, мягкие решения и т.п. Все так, но вот пикфактор... Цитата Кое-что о гексагональных созвездиях есть тут: Спасибо, посмотрю. Цитата(Pathfinder @ May 18 2016, 18:29)  А почему гексагональная решётка является оптимальной по расстоянию? Как-то не очевидно. .... Во-первых, фиксировать нужно не максимальную мощность, а среднюю. Во-вторых, откуда взялись шарики, когда критерием является минимальное расстояние между позициями? И я так и не понял, почему шарики плотнее укладываются гексагонально. Может, какая-нибудь ссылка есть по этому поводу? Как я понял, если взять окружность единичного радиуса и задаться равенством евклидова расстояния между соседними точками(область принятия решений - круг, а не квадрат), то гексагональная решетка позволит уложить в эту окружность наибольшее количество точек. Затем можно просто выколоть ненужные, для получения нужного количества точек созвездия.
--------------------
|
|
|
|
|
May 18 2016, 13:09
|
Гуру
     
Группа: Свой
Сообщений: 2 563
Регистрация: 8-04-05
Из: Nsk
Пользователь №: 3 954

|
Цитата(des00 @ May 18 2016, 17:36)  Как я понял, если взять окружность единичного радиуса и задаться равенством евклидова расстояния между соседними точками(область принятия решений - круг, а не квадрат), то гексагональная решетка позволит уложить в эту окружность наибольшее количество точек. Затем можно просто выколоть ненужные, для получения нужного количества точек созвездия. это скорее треугольная решетка, нежели гексагональная, так как для любые три соседние вершины будут образовывать равносторонний треугольник. но в реальности расстояние не должно быть равным и область принятия решения пожалуй не совсем круг, так как ошибки по фазе и по амплитуде совсем не обязательно должны быть одинаковые.  так что оптимальнее может оказаться не равномерная треугольная сетка с равным расстоянием, а точки расположенные на концентрических окружностях, при этом на каждой окружности сидит по одинаковому числу точек (ну или в 2, 3, N раз больше чем на предыдущей, от соотношения радиусов зависит), и каждая вторая окружность по фазе повернута на угол в полшага между точками.
|
|
|
|
Сообщений в этой теме
des00 Гексагональный и круглый QAM May 18 2016, 06:45 petrov Какие-то цифры по гексагональным созвездиям у Скля... May 18 2016, 08:48 Pathfinder Квадратная решётка удобна ещё тем, что квадратуры ... May 18 2016, 09:06 petrov Цитата(Pathfinder @ May 18 2016, 12:06) А... May 18 2016, 09:44  Pathfinder Цитата(petrov @ May 18 2016, 12:44) Попро... May 18 2016, 09:54   petrov Цитата(Pathfinder @ May 18 2016, 12:54) П... May 18 2016, 10:09 Grizzzly Цитата(Pathfinder @ May 18 2016, 13:06) А... May 18 2016, 13:45 Pathfinder Во-первых, фиксировать нужно не максимальную мощно... May 18 2016, 10:29  des00 Цитата(_pv @ May 18 2016, 20:09) это скор... May 18 2016, 14:33   _pv Цитата(des00 @ May 18 2016, 20:24) Это со... May 18 2016, 15:30 Pathfinder Любопытный факт из статьи, про которую я писал: ге... May 18 2016, 10:46 petrov Цитата(Pathfinder @ May 18 2016, 13:46) Л... May 18 2016, 11:17  Pathfinder Цитата(petrov @ May 18 2016, 14:17) Херня... May 18 2016, 11:46   petrov Цитата(Pathfinder @ May 18 2016, 14:46) П... May 18 2016, 11:58 petrov Относительно простую TCM с гексагональными созвезд... May 18 2016, 15:04 des00 Цитата(petrov @ May 18 2016, 22:04) ........ May 19 2016, 03:41  petrov Цитата(des00 @ May 19 2016, 06:41) с 16 т... May 19 2016, 18:48 des00 Что бы поставить точку в созвездиях MIL-STD, взял ... May 24 2016, 07:53 ilya79 Цитата(des00 @ May 24 2016, 10:53) Что бы... May 24 2016, 17:29  des00 Цитата(ilya79 @ May 25 2016, 01:29) Без м... May 25 2016, 03:37 des00 Попробовал иерархическое кодирование...А в этом, ч... May 25 2016, 06:48 petrov Цитата(des00 @ May 25 2016, 09:48) Попроб... May 25 2016, 10:57  des00 Цитата(petrov @ May 25 2016, 17:57) Для б... May 25 2016, 11:47   petrov Цитата(des00 @ May 25 2016, 14:47) Хмм. Н... May 25 2016, 12:30    des00 Цитата(petrov @ May 25 2016, 19:30) в иде... May 25 2016, 12:37
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0
|
|
|