Что-то не совсем понял исходную задачу. Ваша система имеет вид Ax = y, где размерность x - [6x1], y - [8x1], A - [8x6], задача оценить x, имея A и y? Линейное решение получается через псевдоинверсию: x=(ATA)-1ATy, если A действительная и x=(AHA)-1AHy - если комплексная. В первом случае ATA симметричная матрица, во втором - AHA эрмитова. Эти матрицы обладают известной симметрией, поэтому на них разумно натравить алгоритм Холецкого, по скорости он выигрывает у методов, которые не используют специальные свойства матриц.
|