реклама на сайте
подробности

 
 
> Винеровская фильтрация vs МНК vs РНК
Grizzzly
сообщение Mar 14 2018, 19:46
Сообщение #1


Знающий
****

Группа: Свой
Сообщений: 565
Регистрация: 22-02-13
Пользователь №: 75 748



Немного запутался с минимальной дисперсией ошибки этих алгоритмов.

Оптимальной (в смысле MSE) является винеровская фильтрация. Дисперсия ошибки будет минимальной. Метод наименьших квадратов (МНК, Least Squares (LS)) является детерминированным аналогом винеровской фильтрации. Напрямую МНК не используют, чтобы каждый раз не обращать увеличивающиеся матрицы. Вместо него используют РНК (RLS) алгоритм. Я правильно понимаю, что RLS по сути является эффективной реализацией МНК в плане вычислений, обеспечивая при этом такую же дисперсию ошибки, как тупое вычисление здоровых матриц в МНК? Разве что кроме некоторого переходного процесса при поступлении на вход первых N отсчетов. В литературе приводятся формулы для RLS, но в одной книге нашел, где они обозначаются как LS. То есть в плане дисперсии ошибки LS и RLS абсолютно идентичны?

Прикрепленное изображение
Прикрепленное изображение
Go to the top of the page
 
+Quote Post
 
Start new topic
Ответов
Grizzzly
сообщение Mar 15 2018, 06:27
Сообщение #2


Знающий
****

Группа: Свой
Сообщений: 565
Регистрация: 22-02-13
Пользователь №: 75 748



Спасибо за ответ. Только я имел в виду не LMS, а LS. Сам постоянно путаюсь в названиях, которые исторически так сложилось, но не отражают сути. С LMS понятно. Я чего-то задумался про сравнение RLS и прямой оценке по МНК, при которой на каждом шаге обращались бы матрицы полностью (увеличивающиеся в размерности). По сути ведь в RLS по сравнению с МНК нет никаких аппроксимаций и приближения, значит должны давать одинаковую ошибку, которая хуже Винера, но при бесконечном числе отсчетов на входе стремится к винеровскому решению.

UPD. Добавил картинки.

Прикрепленное изображение
Прикрепленное изображение
Прикрепленное изображение


На первой формула (3.7) - это и есть МНК "в лоб". На второй картинке говорится о дисперсии ошибки оценки для этого метода при большом числе входных отсчетов n. На третьей подчеркнуто, что в RLS (РНК) дисперсия убывает пропорционально отношению (N/n), где N - число коэффициентов. Интересно, а вот как связаны дисперсии ошибки для МНК и RLS (РНК) при малых n. Здесь я подвис. Ведь RLS получается из (3.7) лишь путем различных матричных преобразований. Вроде бы тогда ошибки должны быть одинаковы.

P.S. Есть некая относительно небольшая выборка с постоянными коэффициентами, подлежащими оценке. Хочу, не прибегая пока к моделированию, разобраться с точностью оценки по МНК и РНК...
Go to the top of the page
 
+Quote Post



Reply to this topicStart new topic
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 


RSS Текстовая версия Сейчас: 21st June 2025 - 19:11
Рейтинг@Mail.ru


Страница сгенерированна за 0.01375 секунд с 7
ELECTRONIX ©2004-2016