Спасибо за ответ. Только я имел в виду не LMS, а LS. Сам постоянно путаюсь в названиях, которые исторически так сложилось, но не отражают сути. С LMS понятно. Я чего-то задумался про сравнение RLS и прямой оценке по МНК, при которой на каждом шаге обращались бы матрицы полностью (увеличивающиеся в размерности). По сути ведь в RLS по сравнению с МНК нет никаких аппроксимаций и приближения, значит должны давать одинаковую ошибку, которая хуже Винера, но при бесконечном числе отсчетов на входе стремится к винеровскому решению.
UPD. Добавил картинки.
На первой формула (3.7) - это и есть МНК "в лоб". На второй картинке говорится о дисперсии ошибки оценки для этого метода при
большом числе входных отсчетов n. На третьей подчеркнуто, что в RLS (РНК) дисперсия убывает пропорционально отношению (N/n), где N - число коэффициентов. Интересно, а вот как связаны дисперсии ошибки для МНК и RLS (РНК) при
малых n. Здесь я подвис. Ведь RLS получается из (3.7) лишь путем различных матричных преобразований. Вроде бы тогда ошибки должны быть одинаковы.
P.S. Есть некая относительно небольшая выборка с постоянными коэффициентами, подлежащими оценке. Хочу, не прибегая пока к моделированию, разобраться с точностью оценки по МНК и РНК...