Цитата(Hamb @ May 3 2008, 21:49)

Доброго времени суток, уважаемые форумчане подскажите, где можно найти методику расчета крестообразной диафрагмы, что бы связать два волновода.

Точное электродинамическое решение задачи можно найти в статье:
Ke-Li Wu and Robert H. MacPhi
"A rigorous Analysis of a Cross Waveguide to Large Circular Waveguide Junction and Its Application in Waveguide Filter Design" -- IEEE MTT, Vol. 45, No. 1, January 1997
Если нужно, я могу прислать статью.
Но хочу заметить, что это достаточно сложная классическая трехмерная некоординатная волноводная задача. Методика ее решения хорошо известна -- строим поля собственных колебаний крестообразного волновода (например, методом продольного резонанса), получаем матрицу связи мод крестообразного и круглого волноводов и сшиваем поля на диафрагме, учитывая симметрию системы. Имея матрицу рассеяния стыка круглого и крестообразного, применяем метод обобщенных матриц рассеяния и получаем матрицу рассеяния диафрагмы.
Чтобы сделать программу для такой диафрагмы нужно иметь решение для задач -- стыка трямоугольных волноводов разного сечения в Е и Н плоскостях, поиска минимума детерминанта матрицы, построения полей собственных колебаний, расчета интегралов связи мод круглого и прямоугольного волноводов, метода обобщенных матриц рассеяния.
Если крест мал можно использовать теорию малых аппертур Бетте, через магнитную и электрическую поляризуемость. Например в статье "Analysis and Close-Form Solutions of Circular and Rectangular Apertures in the Transverse Plane of a Circular Waveguide" Gary B Eastham and Kai Chang, IEEE MTT, Vol 39, No.4, April 1991, p. 718 приведены формулы для продольных и поперечных прямоугольных диафрагм и много ссылок. Эту статью тоже могу выслать.