Вы не привели потребные параметры, поэтому и нельзя оценить много это 32 канала или мало. Если амплитудный анализ идет по 128 (7 бит) каналам это одно и совсем другое если 65000 (16 бит). Да и от времени преобразования и длительности выборки многое зависит. Если параметры скромные, то и обойтись можно 1-им ОУ на канал. А если речь о 5-10 нсек выборке и частоте заполнения 100-200 МГц то это очень "лохматое" устройство + какая величина дифференциальной нелинейности? В любом случае очевидно, что цифровую часть надо запихивать в Altera (CPLD\FPGA). Серийно микросхемы АЦП Вилкинсона (Амплитудно-временные преобразователи) не выпускались, поскольку потребности в больших количествах их нет и не будет: применение исключительно в научных приборах в специфической области физики.... Можно рассмотреть, как вариант, АЦП обычный + просуммировать младшие разряды (в терминах многоканального амплитудного анализа объединить каналы) - например при объединении n каналов Вы уменьшите диф. нелинейность в (Корень из n) раз. Можно не суммируя младшие биты применить "статистическое разравнивание", что тоже приводит к уменьшению диф. нелинейности - в пределе приближается к методу Вилкинсона. Можно порекомендовать такие ключевые слова: Ядерная электроника, многоканальный амплитудный анализ, Амплитудно-временное преобразование, регистрация элементарных частиц..... Литературы очень много, включая и учебники и хотя элементная база и очень изменилась, но идеи практически нет. P.S. Но вообще-то 128 штук на одной плате это перебор (по моему), если плата не 0.5-1 м^2. В Дубне был такой Басиладзе - ну очень много совал каналов на КАМАК плату, но больше 16 штук у него не получалось. Много публиковал в ПТЭ - посмотрите - ВЦП у него были очень простые можно воспользоваться идеями: это конец 70-х -1990 год.
|