День добрый. На борде STM3210C запустил оба can, данные между канами бегают и отображаются в приемных и передающих регистрах правильно. Завел прерывания CAN_FIFO0 на оба кана, взял из бордовского примера. В результате прерывание can2 работает, а прерывание can1 не срабатывает.
CODE
#include"stm32f10x.h"
#include"bits.h"
#include "stm32_eval.h"
#include "stm3210c_eval_lcd.h"
//#define HSE_VALUE ((uint32_t)25000000)
unsigned int system_timer, rs232_timer;
CAN_InitTypeDef CAN_InitStructure;
CAN_FilterInitTypeDef CAN_FilterInitStructure;
CanTxMsg TxMessage;
CanRxMsg RxMessage;
void NVIC_Config(void);
void CAN_Config(void);
void LED_Display(uint8_t Ledstatus);
void Init_RxMes(CanRxMsg *RxMessage);
void Delay(void);
void NVIC_Config(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
NVIC_InitStructure.NVIC_IRQChannel = CAN1_RX0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannel = CAN2_RX0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
void SysTick_Handler(void)
{
system_timer ++;
/*rs232_timer ++;
transceiver_message_timer ++;
if(gps_wait_fl)gps_timer ++;
else gps_timer = 0;
if(transceiver_wait_fl)transceiver_timer ++;
else transceiver_timer = 0;
if(!(test_pin(C,2))) on_off_key_timer ++;
accumulator_timer ++;
if(!(test_pin(C,3))) sos_key_timer ++;
if(sos_wait_fl)sos_timer ++;*/
}
void CAN1_RX0_IRQHandler(void)
{
CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);
if ((RxMessage.StdId == 0x321)&&(RxMessage.IDE == CAN_ID_STD)&&(RxMessage.DLC == 8)&&(RxMessage.Data[0] == 0x55))
{
/* Turn On LED2 */
set_pin(D,13);
}
else
{
/* Turn Off LED2 */
clear_pin(D,13); /* Error */
}
}
void CAN2_RX0_IRQHandler(void)
{
CAN_Receive(CAN2, CAN_FIFO0, &RxMessage);
if ((RxMessage.StdId == 0x321)&&(RxMessage.IDE == CAN_ID_STD)&&(RxMessage.DLC == 8)&&(RxMessage.Data[0] == 0x55))
{
/* Turn On LED2 */
set_pin(D,3);
}
else
{
/* Turn Off LED2 */
clear_pin(D,3); /* Error */
}
}
static void SetSysClockToHSE(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}
if (HSEStatus == (uint32_t)0x01)
{
#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL && !defined STM32F10X_HD_VL
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 0 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
#ifndef STM32F10X_CL
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;
#else
if (HSE_VALUE <= 24000000)
{
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;
}
else
{
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_1;
}
#endif /* STM32F10X_CL */
#endif
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;
/* Select HSE as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_HSE;
/* Wait till HSE is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x04)
{
}
}
else
{ /* If HSE fails to start-up, the application will have wrong clock
configuration. User can add here some code to deal with this error */
}
}
void CAN_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure CAN1 and CAN2 IOs **********************************************/
/* GPIOB, GPIOD and AFIO clocks enable */
// RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOB, ENABLE);
/* Configure CAN1 RX pin */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* Configure CAN2 RX pin */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Configure CAN1 TX pin */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* Configure CAN2 TX pin */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Remap CAN1 and CAN2 GPIOs */
GPIO_PinRemapConfig(GPIO_Remap2_CAN1 , ENABLE);
GPIO_PinRemapConfig(GPIO_Remap_CAN2, ENABLE);
/* Configure CAN1 and CAN2 **************************************************/
/* CAN1 and CAN2 Periph clocks enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1 | RCC_APB1Periph_CAN2, ENABLE);
/* CAN1 and CAN2 register init */
CAN_DeInit(CAN1);
CAN_DeInit(CAN2);
/* Struct init*/
CAN_StructInit(&CAN_InitStructure);
/* CAN1 and CAN2 cell init */
CAN_InitStructure.CAN_TTCM = DISABLE;
CAN_InitStructure.CAN_ABOM = DISABLE;
CAN_InitStructure.CAN_AWUM = DISABLE;
CAN_InitStructure.CAN_NART = ENABLE;
CAN_InitStructure.CAN_RFLM = DISABLE;
CAN_InitStructure.CAN_TXFP = ENABLE;
CAN_InitStructure.CAN_Mode = CAN_Mode_Normal;//CAN_Mode_LoopBack;
CAN_InitStructure.CAN_SJW = CAN_SJW_2tq;
CAN_InitStructure.CAN_BS1 = CAN_BS1_4tq;
CAN_InitStructure.CAN_BS2 = CAN_BS2_4tq;
CAN_InitStructure.CAN_Prescaler = 20;
/*Initializes the CAN1 and CAN2 */
CAN_Init(CAN1, &CAN_InitStructure);
CAN_Init(CAN2, &CAN_InitStructure);
/* CAN1 filter init */
CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdList;
CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;
CAN_FilterInitStructure.CAN_FilterIdHigh = 0x321 << 5;
CAN_FilterInitStructure.CAN_FilterIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x0;
CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0;
CAN_FilterInitStructure.CAN_FilterActivation = ENABLE;
CAN_FilterInit(&CAN_FilterInitStructure);
/* CAN2 filter init */
CAN_FilterInitStructure.CAN_FilterIdHigh =0x321 << 5;
CAN_FilterInitStructure.CAN_FilterNumber = 15;
CAN_FilterInit(&CAN_FilterInitStructure);
/* Transmit */
TxMessage.StdId = 0x321;
TxMessage.ExtId = 0x01;
TxMessage.RTR = CAN_RTR_DATA;
TxMessage.IDE = CAN_ID_STD;
TxMessage.DLC = 8;
}
void Init_RxMes(CanRxMsg *RxMessage)
{
uint8_t i = 0;
RxMessage->StdId = 0;
RxMessage->ExtId = 0;
RxMessage->IDE = CAN_ID_STD;
RxMessage->DLC = 0;
RxMessage->FMI = 0;
for (i = 0; i < 8; i++)
{
RxMessage->Data[i] = 0;
}
}
int main()
{
/* NVIC configuration */
NVIC_Config();
RCC_DeInit();
SetSysClockToHSE();
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
//RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
RCC_LSICmd(ENABLE);
while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) == RESET)
{}
/* Enable write access to IWDG_PR and IWDG_RLR registers */
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
/* IWDG counter clock: 40KHz(LSI) / 32 = 1.25 KHz */
IWDG_SetPrescaler(IWDG_Prescaler_32);
/* Set counter reload value to 4000 */
IWDG_SetReload(4000);
/* Reload IWDG counter */
IWDG_ReloadCounter();
/* Enable IWDG */
IWDG_Enable();
//NVIC_Configuration();
SysTick->CTRL|=SysTick_CTRL_ENABLE;
SysTick->CTRL|=SysTick_CTRL_TICKINT;
SysTick->LOAD|=250000;
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
RCC->CFGR |= RCC_CFGR_MCO_SYSCLK;
/* LCD Initialization */
STM3210C_LCD_Init();
LCD_Clear(LCD_COLOR_WHITE);
/* Set the LCD Back Color */
LCD_SetBackColor(LCD_COLOR_RED);
/* Set the LCD Text Color */
LCD_SetTextColor(LCD_COLOR_GREEN);
LCD_DisplayStringLine(LCD_LINE_0, " STM3210C-EVAL ");
LCD_DisplayStringLine(LCD_LINE_1, " STM32F10x Dual CAN ");
LCD_DisplayStringLine(LCD_LINE_2, " ***can_t1*** ");
LCD_DisplayStringLine(LCD_LINE_3, "Key or Tamper Button");
/* CANs configuration */
CAN_Config();
/* IT Configuration for CAN1 */
CAN_ITConfig(CAN1, CAN_IT_FMP0, ENABLE);
/* IT Configuration for CAN2 */
CAN_ITConfig(CAN2, CAN_IT_FMP0, ENABLE);
while(1)
{
if(system_timer > 10)
{
system_timer = 0;
toggle_pin(D,7);
TxMessage.Data[0] = 0x55;
TxMessage.Data[1] = 0x01;
TxMessage.Data[2] = 0x02;
TxMessage.Data[3] = 0x00;
TxMessage.Data[4] = 0x00;
TxMessage.Data[5] = 0x00;
TxMessage.Data[6] = 0x00;
TxMessage.Data[7] = 0x00;
CAN_Transmit(CAN1, &TxMessage);
CAN_Transmit(CAN2, &TxMessage);
}
IWDG_ReloadCounter();
}
}
Сообщение отредактировал IgorKossak - Sep 17 2014, 13:05
Причина редактирования: [codebox] для длинного кода, [code] - для короткого!!!