Приветствую всех!
На данном форуме мне очень здорово когда-то помогли в решении некоторых задач. Поэтому решил еще раз обратиться к уважаемому сообществу с просьбой дать дельный совет/рекомендации, как подступиться к решению такой задачи:
Определена такая функция для любого вектора: F(V) = Sum(Abs(V[j] - V[j + 1])) , либо F(V) = Sum((V[j] - V[j + 1])^2))
Даны одинаковой размерности вектора V1, V2, ..., Vn, у каждого из которых сумма его элементов равна нулю.
Нужно найти вектор NewV = K1 * V1 + K2 * V2 + ... + Kn * Vn, где Sum(Abs(Ki)) = 1, либо Sum(Ki^2) = 1
значение F(NewV) которого было бы максимальным.
У меня есть гипотеза, что всегда верно неравенство F(NewV) <= max(F(V1), F(V1), ...., F(Vn)), т.е. решением задачи является вектор коэффициентов, где один элемент равен ±единице, а остальные - нули.
Возможно, кому-то известно решение схожей или частного случая этой задачи. Спасибо.