Ломаю голову над такой, казалось бы простой задачей - хочу создать собственную периферию для ZYNQ (плата ZedBoard).
Есть проект в PlanAhead - базовые вещи (всякие HelloWorld и т.д.) работают нормально, все синтезируется и компилируется.
В XPS во вкладке "Crate or Import Peripheral" создаю новую периферию - AXI4-Lite: Simple с 3 регистрами.
Далее, на сколько я понимаю требуется изменить уже в ручном порядке закопанный файл user_logic.v/vhd, добавив уже свою логику и т.д.
Вопрос:
1. Правильно ли я делаю? Читал на форумах про использования для этих целей Vivado, но это уже перебор (в рамках одного проекта ISE, PlanAhead, SDK, XPS - хотелось бы без Vivado обойтись, к тому же он больше для синтеза высокоуровневых языков C/C++ и т.д.)
2. Что сразу смущает - как что-то писать в регистры, доступные для процессоров из вновь созданной логики? Из описания шаблона на мой взгляд следует, что это сделать невозможно. Т.е. что-то читать с регистров конечно можно, а вот записать информацию, которую затем прочитает процессор невозможно без существенной переработки шаблонов...
В общем где-то у меня недопонимание и я не знаю что читать - где смотреть.
Заранее спасибо за помосчь

Код
//----------------------------------------------------------------------------
// user_logic.v - module
//----------------------------------------------------------------------------
//
// ***************************************************************************
// ** Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved. **
// ** **
// ** Xilinx, Inc. **
// ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" **
// ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND **
// ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, **
// ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, **
// ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION **
// ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, **
// ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **
// ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY **
// ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **
// ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **
// ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **
// ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **
// ** FOR A PARTICULAR PURPOSE. **
// ** **
// ***************************************************************************
//
//----------------------------------------------------------------------------
// Filename: user_logic.v
// Version: 1.00.a
// Description: User logic module.
// Date: Tue Jan 07 17:37:40 2014 (by Create and Import Peripheral Wizard)
// Verilog Standard: Verilog-2001
//----------------------------------------------------------------------------
// Naming Conventions:
// active low signals: "*_n"
// clock signals: "clk", "clk_div#", "clk_#x"
// reset signals: "rst", "rst_n"
// generics: "C_*"
// user defined types: "*_TYPE"
// state machine next state: "*_ns"
// state machine current state: "*_cs"
// combinatorial signals: "*_com"
// pipelined or register delay signals: "*_d#"
// counter signals: "*cnt*"
// clock enable signals: "*_ce"
// internal version of output port: "*_i"
// device pins: "*_pin"
// ports: "- Names begin with Uppercase"
// processes: "*_PROCESS"
// component instantiations: "<ENTITY_>I_<#|FUNC>"
//----------------------------------------------------------------------------
`uselib lib=unisims_ver
`uselib lib=proc_common_v3_00_a
module user_logic
(
// -- ADD USER PORTS BELOW THIS LINE ---------------
// --USER ports added here
// -- ADD USER PORTS ABOVE THIS LINE ---------------
// -- DO NOT EDIT BELOW THIS LINE ------------------
// -- Bus protocol ports, do not add to or delete
Bus2IP_Clk, // Bus to IP clock
Bus2IP_Resetn, // Bus to IP reset
Bus2IP_Data, // Bus to IP data bus
Bus2IP_BE, // Bus to IP byte enables
Bus2IP_RdCE, // Bus to IP read chip enable
Bus2IP_WrCE, // Bus to IP write chip enable
IP2Bus_Data, // IP to Bus data bus
IP2Bus_RdAck, // IP to Bus read transfer acknowledgement
IP2Bus_WrAck, // IP to Bus write transfer acknowledgement
IP2Bus_Error // IP to Bus error response
// -- DO NOT EDIT ABOVE THIS LINE ------------------
); // user_logic
// -- ADD USER PARAMETERS BELOW THIS LINE ------------
// --USER parameters added here
// -- ADD USER PARAMETERS ABOVE THIS LINE ------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol parameters, do not add to or delete
parameter C_NUM_REG = 3;
parameter C_SLV_DWIDTH = 32;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
// -- ADD USER PORTS BELOW THIS LINE -----------------
// --USER ports added here
// -- ADD USER PORTS ABOVE THIS LINE -----------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol ports, do not add to or delete
input Bus2IP_Clk;
input Bus2IP_Resetn;
input [C_SLV_DWIDTH-1 : 0] Bus2IP_Data;
input [C_SLV_DWIDTH/8-1 : 0] Bus2IP_BE;
input [C_NUM_REG-1 : 0] Bus2IP_RdCE;
input [C_NUM_REG-1 : 0] Bus2IP_WrCE;
output [C_SLV_DWIDTH-1 : 0] IP2Bus_Data;
output IP2Bus_RdAck;
output IP2Bus_WrAck;
output IP2Bus_Error;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
//----------------------------------------------------------------------------
// Implementation
//----------------------------------------------------------------------------
// --USER nets declarations added here, as needed for user logic
// Nets for user logic slave model s/w accessible register example
reg [C_SLV_DWIDTH-1 : 0] slv_reg0;
reg [C_SLV_DWIDTH-1 : 0] slv_reg1;
reg [C_SLV_DWIDTH-1 : 0] slv_reg2;
wire [2 : 0] slv_reg_write_sel;
wire [2 : 0] slv_reg_read_sel;
reg [C_SLV_DWIDTH-1 : 0] slv_ip2bus_data;
wire slv_read_ack;
wire slv_write_ack;
integer byte_index, bit_index;
// USER logic implementation added here
// ------------------------------------------------------
// Example code to read/write user logic slave model s/w accessible registers
//
// Note:
// The example code presented here is to show you one way of reading/writing
// software accessible registers implemented in the user logic slave model.
// Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond
// to one software accessible register by the top level template. For example,
// if you have four 32 bit software accessible registers in the user logic,
// you are basically operating on the following memory mapped registers:
//
// Bus2IP_WrCE/Bus2IP_RdCE Memory Mapped Register
// "1000" C_BASEADDR + 0x0
// "0100" C_BASEADDR + 0x4
// "0010" C_BASEADDR + 0x8
// "0001" C_BASEADDR + 0xC
//
// ------------------------------------------------------
assign
slv_reg_write_sel = Bus2IP_WrCE[2:0],
slv_reg_read_sel = Bus2IP_RdCE[2:0],
slv_write_ack = Bus2IP_WrCE[0] || Bus2IP_WrCE[1] || Bus2IP_WrCE[2],
slv_read_ack = Bus2IP_RdCE[0] || Bus2IP_RdCE[1] || Bus2IP_RdCE[2];
// implement slave model register(s)
always @( posedge Bus2IP_Clk )
begin
if ( Bus2IP_Resetn == 1'b0 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
end
else
case ( slv_reg_write_sel )
3'b100 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
slv_reg0[(byte_index*8) +: 8] <= Bus2IP_Data[(byte_index*8) +: 8];
3'b010 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
slv_reg1[(byte_index*8) +: 8] <= Bus2IP_Data[(byte_index*8) +: 8];
3'b001 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
slv_reg2[(byte_index*8) +: 8] <= Bus2IP_Data[(byte_index*8) +: 8];
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
end
endcase
end // SLAVE_REG_WRITE_PROC
// implement slave model register read mux
always @( slv_reg_read_sel or slv_reg0 or slv_reg1 or slv_reg2 )
begin
case ( slv_reg_read_sel )
3'b100 : slv_ip2bus_data <= slv_reg0;
3'b010 : slv_ip2bus_data <= slv_reg1;
3'b001 : slv_ip2bus_data <= slv_reg2;
default : slv_ip2bus_data <= 0;
endcase
end // SLAVE_REG_READ_PROC
// ------------------------------------------------------------
// Example code to drive IP to Bus signals
// ------------------------------------------------------------
assign IP2Bus_Data = (slv_read_ack == 1'b1) ? slv_ip2bus_data : 0;
assign IP2Bus_WrAck = slv_write_ack;
assign IP2Bus_RdAck = slv_read_ack;
assign IP2Bus_Error = 0;
endmodule
// user_logic.v - module
//----------------------------------------------------------------------------
//
// ***************************************************************************
// ** Copyright (c) 1995-2012 Xilinx, Inc. All rights reserved. **
// ** **
// ** Xilinx, Inc. **
// ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" **
// ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND **
// ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, **
// ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, **
// ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION **
// ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, **
// ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **
// ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY **
// ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **
// ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **
// ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **
// ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **
// ** FOR A PARTICULAR PURPOSE. **
// ** **
// ***************************************************************************
//
//----------------------------------------------------------------------------
// Filename: user_logic.v
// Version: 1.00.a
// Description: User logic module.
// Date: Tue Jan 07 17:37:40 2014 (by Create and Import Peripheral Wizard)
// Verilog Standard: Verilog-2001
//----------------------------------------------------------------------------
// Naming Conventions:
// active low signals: "*_n"
// clock signals: "clk", "clk_div#", "clk_#x"
// reset signals: "rst", "rst_n"
// generics: "C_*"
// user defined types: "*_TYPE"
// state machine next state: "*_ns"
// state machine current state: "*_cs"
// combinatorial signals: "*_com"
// pipelined or register delay signals: "*_d#"
// counter signals: "*cnt*"
// clock enable signals: "*_ce"
// internal version of output port: "*_i"
// device pins: "*_pin"
// ports: "- Names begin with Uppercase"
// processes: "*_PROCESS"
// component instantiations: "<ENTITY_>I_<#|FUNC>"
//----------------------------------------------------------------------------
`uselib lib=unisims_ver
`uselib lib=proc_common_v3_00_a
module user_logic
(
// -- ADD USER PORTS BELOW THIS LINE ---------------
// --USER ports added here
// -- ADD USER PORTS ABOVE THIS LINE ---------------
// -- DO NOT EDIT BELOW THIS LINE ------------------
// -- Bus protocol ports, do not add to or delete
Bus2IP_Clk, // Bus to IP clock
Bus2IP_Resetn, // Bus to IP reset
Bus2IP_Data, // Bus to IP data bus
Bus2IP_BE, // Bus to IP byte enables
Bus2IP_RdCE, // Bus to IP read chip enable
Bus2IP_WrCE, // Bus to IP write chip enable
IP2Bus_Data, // IP to Bus data bus
IP2Bus_RdAck, // IP to Bus read transfer acknowledgement
IP2Bus_WrAck, // IP to Bus write transfer acknowledgement
IP2Bus_Error // IP to Bus error response
// -- DO NOT EDIT ABOVE THIS LINE ------------------
); // user_logic
// -- ADD USER PARAMETERS BELOW THIS LINE ------------
// --USER parameters added here
// -- ADD USER PARAMETERS ABOVE THIS LINE ------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol parameters, do not add to or delete
parameter C_NUM_REG = 3;
parameter C_SLV_DWIDTH = 32;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
// -- ADD USER PORTS BELOW THIS LINE -----------------
// --USER ports added here
// -- ADD USER PORTS ABOVE THIS LINE -----------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol ports, do not add to or delete
input Bus2IP_Clk;
input Bus2IP_Resetn;
input [C_SLV_DWIDTH-1 : 0] Bus2IP_Data;
input [C_SLV_DWIDTH/8-1 : 0] Bus2IP_BE;
input [C_NUM_REG-1 : 0] Bus2IP_RdCE;
input [C_NUM_REG-1 : 0] Bus2IP_WrCE;
output [C_SLV_DWIDTH-1 : 0] IP2Bus_Data;
output IP2Bus_RdAck;
output IP2Bus_WrAck;
output IP2Bus_Error;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
//----------------------------------------------------------------------------
// Implementation
//----------------------------------------------------------------------------
// --USER nets declarations added here, as needed for user logic
// Nets for user logic slave model s/w accessible register example
reg [C_SLV_DWIDTH-1 : 0] slv_reg0;
reg [C_SLV_DWIDTH-1 : 0] slv_reg1;
reg [C_SLV_DWIDTH-1 : 0] slv_reg2;
wire [2 : 0] slv_reg_write_sel;
wire [2 : 0] slv_reg_read_sel;
reg [C_SLV_DWIDTH-1 : 0] slv_ip2bus_data;
wire slv_read_ack;
wire slv_write_ack;
integer byte_index, bit_index;
// USER logic implementation added here
// ------------------------------------------------------
// Example code to read/write user logic slave model s/w accessible registers
//
// Note:
// The example code presented here is to show you one way of reading/writing
// software accessible registers implemented in the user logic slave model.
// Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond
// to one software accessible register by the top level template. For example,
// if you have four 32 bit software accessible registers in the user logic,
// you are basically operating on the following memory mapped registers:
//
// Bus2IP_WrCE/Bus2IP_RdCE Memory Mapped Register
// "1000" C_BASEADDR + 0x0
// "0100" C_BASEADDR + 0x4
// "0010" C_BASEADDR + 0x8
// "0001" C_BASEADDR + 0xC
//
// ------------------------------------------------------
assign
slv_reg_write_sel = Bus2IP_WrCE[2:0],
slv_reg_read_sel = Bus2IP_RdCE[2:0],
slv_write_ack = Bus2IP_WrCE[0] || Bus2IP_WrCE[1] || Bus2IP_WrCE[2],
slv_read_ack = Bus2IP_RdCE[0] || Bus2IP_RdCE[1] || Bus2IP_RdCE[2];
// implement slave model register(s)
always @( posedge Bus2IP_Clk )
begin
if ( Bus2IP_Resetn == 1'b0 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
end
else
case ( slv_reg_write_sel )
3'b100 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
slv_reg0[(byte_index*8) +: 8] <= Bus2IP_Data[(byte_index*8) +: 8];
3'b010 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
slv_reg1[(byte_index*8) +: 8] <= Bus2IP_Data[(byte_index*8) +: 8];
3'b001 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
slv_reg2[(byte_index*8) +: 8] <= Bus2IP_Data[(byte_index*8) +: 8];
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
end
endcase
end // SLAVE_REG_WRITE_PROC
// implement slave model register read mux
always @( slv_reg_read_sel or slv_reg0 or slv_reg1 or slv_reg2 )
begin
case ( slv_reg_read_sel )
3'b100 : slv_ip2bus_data <= slv_reg0;
3'b010 : slv_ip2bus_data <= slv_reg1;
3'b001 : slv_ip2bus_data <= slv_reg2;
default : slv_ip2bus_data <= 0;
endcase
end // SLAVE_REG_READ_PROC
// ------------------------------------------------------------
// Example code to drive IP to Bus signals
// ------------------------------------------------------------
assign IP2Bus_Data = (slv_read_ack == 1'b1) ? slv_ip2bus_data : 0;
assign IP2Bus_WrAck = slv_write_ack;
assign IP2Bus_RdAck = slv_read_ack;
assign IP2Bus_Error = 0;
endmodule