Помощь - Поиск - Пользователи - Календарь
Полная версия этой страницы: Можно ли вычислить интеграл? Где посмотреть?
Форум разработчиков электроники ELECTRONIX.ru > Cистемный уровень проектирования > Математика и Физика
Дмитрий_Б
В приложении формула.
Serge V Iz
Если я не ошибаюсь, то интеграл sin x/x^2, не должен сходиться в окрестности 0. Соответственно H(0) неопределено.
Дмитрий_Б
Цитата(Serge V Iz @ Jul 17 2018, 18:46) *
Если я не ошибаюсь, то интеграл sin x/x^2, не должен сходиться в окрестности 0. Соответственно H(0) неопределено.

Похоже. Ну, положим, там дельта - функция. А на остальной оси?

Цитата(blackfin @ Jul 17 2018, 18:59) *

Да. Но как его брать?
blackfin
Цитата(Дмитрий_Б @ Jul 17 2018, 18:09) *
Да. Но как его брать?

ЕМНИП, через вычеты.

У функции два полюса на вещественной оси и две особенности на бесконечности. Нужно сместить контур интегрирования и воспользоваться теоремой Коши.

Метод такой:

Рисуете на комплексной плоскости прямоугольник охватывающий оба полюса подынтегральной функции: x = 0 и x = ω.

По теореме Коши интеграл по этому прямоугольнику равен сумме вычетов подынтегральной функции.

Вычет в точке x = 0 равен нулю.

Вычет в точке x = ω равен sin(ω)/ω.

Теперь смещаете левую и правую стороны к прямоугольника к -∞ и +∞, соответственно.

Поскольку при x -> -∞ и x -> +∞ подынтегральная функция стремится к нулю как: 1/x2, оба интеграла вдоль левой и правой стороны прямоугольника стремятся к нулю.

Теперь смещаете верхнюю и нижнюю стороны к прямоугольника к +i0 и -i0 соответственно.

Теперь в интеграле вдоль отрезка (+∞,+i0)..(-∞,+i0) меняете направление интегрирования и замечаете, что сумма обоих получившихся интегралов равна удвоенному интегралу, который вы хотите вычислить.

В итоге получаете:

ʃ{sin(x)/[x(ω-x)]dx = (1/2)*sin(ω)/ω.

Если ничего не напутал.. biggrin.gif
Дмитрий_Б
Цитата(blackfin @ Jul 17 2018, 19:28) *
ЕМНИП, через вычеты.

У функции два полюса на вещественной оси и две особенности на бесконечности. Нужно сместить контур интегрирования и воспользоваться теоремой Коши.

Метод такой:

Рисуете на комплексной плоскости прямоугольник охватывающий оба полюса подынтегральной функции: x = 0 и x = ω.

По теореме Коши интеграл по этому прямоугольнику равен сумме вычетов подынтегральной функции.

Вычет в точке x = 0 равен нулю.

Вычет в точке x = ω равен sin(ω)/ω.

Теперь смещаете левую и правую стороны к прямоугольника к -∞ и +∞, соответственно.

Поскольку при x -> -∞ и x -> +∞ подынтегральная функция стремится к нулю как: 1/x2, оба интеграла вдоль левой и правой стороны прямоугольника стремятся к нулю.

Теперь смещаете верхнюю и нижнюю стороны к прямоугольника к +i0 и -i0 соответственно.

Теперь в интеграле вдоль отрезка (+∞,+i0)..(-∞,+i0) меняете направление интегрирования и замечаете, что сумма обоих получившихся интегралов равна удвоенному интегралу, который вы хотите вычислить.

В итоге получаете:

ʃ{sin(x)/[x(ω-x)]dx = (1/2)*sin(ω)/ω.

Если ничего не напутал.. biggrin.gif

Идея понятна.
Есть тут неприятность: теорема о вычетах требует, чтобы на контуре интегрирования не было полюсов - а они как раз на действительной оси.
Нас интересует интеграл вдоль действительной оси - это должно быть нижней стороной контура при обычном обходе против часовой стрелки.
Другие стороны (будь то прямоугольник или пол-окружности) должны быть бесконечно удалены от 0. Метод работает, если подинтегральная функция комплексного аргумента стремится по модулю к 0 при стремлении к бесконечности модуля комплексного аргумента.
И здесь вторая трудность: |sin()| комплексного аргумента неограниченно растет при увеличении мнимой части - превращаясь в sh(). Хорошее предположение об ограниченности подинтегральной функции нарушается.

И еще одно. Получилось, что преобразование Гильберта от sinc() есть та же самая sinc(). Тогда комплексная огибающая sinc() - тоже sinc()? Не очень похоже на правду.
blackfin
Цитата(Дмитрий_Б @ Jul 17 2018, 20:07) *
И еще одно. Получилось, что преобразование Гильберта от sinc() есть та же самая sinc(). Тогда комплексная огибающая sinc() - тоже sinc()? Не очень похоже на правду.

Ну, там со сменой направления интегрирования не все так просто, как выяснилось.. wink.gif

Цитата(Дмитрий_Б @ Jul 17 2018, 20:07) *
И здесь вторая трудность: |sin()| комплексного аргумента неограниченно растет при увеличении мнимой части - превращаясь в sh(). Хорошее предположение об ограниченности подинтегральной функции нарушается.

Экспоненциальный рост функции sin(x) при x -> 0±i*∞ при указанном выше пути интегрирования нас, вроде, волновать не должен.
blackfin
В итоге получается так:
Нажмите для просмотра прикрепленного файла
Нажмите для просмотра прикрепленного файла
UPD: Исправил ошибки.. biggrin.gif

То есть, искомый интеграл равен:

I(ω) = pi*[1- cos(ω)]/ω.
mcheb
Цитата(Дмитрий_Б @ Jul 17 2018, 18:29) *
В приложении формула.

Если w -> Real ,то не сходится
blackfin
Цитата(mcheb @ Jul 18 2018, 03:23) *
Если w -> Real ,то не сходится

Всё там сходится, для значений "ω" не равных тождественно нулю.

PS. Кстати, формула, похоже, верна и в точке ω = 0.
mcheb
Цитата(blackfin @ Jul 18 2018, 08:18) *
Всё там сходится, для значений "ω" не равных тождественно нулю.


Для такого y = inline ("sin(x)/x/(3-x)");
[q, ier, nfun, err] = quad (y,-1000000000., 1000000000.)
Октава выдала ABNORMAL RETURN FROM DQAGP
blackfin
Цитата(mcheb @ Jul 18 2018, 08:05) *
Октава выдала ABNORMAL RETURN FROM DQAGP

А она умеет вычислять главное значение интеграла по Коши?

PS. Кстати, в английской версии Wiki есть табличка с готовыми формулами для преобразования Гильберта sinc-функции.
thermit
Цитата(blackfin @ Jul 17 2018, 22:59) *
В итоге получается так:
Нажмите для просмотра прикрепленного файла

UPD: Полученный результат таки нужно поделить на два, так как путь интегрирования проходит через оба полюса.

То есть, искомый интеграл равен:

I(ω) = [1+ cos(ω)]/[2*ω].


Не правильно.
blackfin
Цитата(thermit @ Jul 18 2018, 09:28) *
Не правильно.

Исправил. См. выше..
thermit
Да.
mcheb
Цитата(blackfin @ Jul 18 2018, 08:26) *
А она умеет вычислять главное значение интеграла по Коши?

PS. Кстати, в английской версии Wiki есть табличка с готовыми формулами для преобразования Гильберта sinc-функции.

Wolfram Matematica выдала
"Integral of Sin[x]/(3*x-x^2) does not converge on {-\[Infinity],\\[Infinity]}. "
Для функции Sin[x]/(x*(3-x))
Ну она то точно умеет вычислять главное значение интеграла по Коши

Но похоже как-то по-своему делает. Всегда сходится
thermit
Цитата(mcheb @ Jul 18 2018, 14:04) *
Wolfram Matematica выдала
"Integral of Sin[x]/(3*x-x^2) does not converge on {-\[Infinity],\\[Infinity]}. "
Для функции Sin[x]/(x*(3-x))
Ну она то точно умеет вычислять главное значение интеграла по Коши

Но похоже как-то по-своему делает. Всегда сходится


Такой тупняк маткад вычисляет легко.
Дмитрий_Б
Цитата(blackfin @ Jul 17 2018, 23:59) *
В итоге получается так:
Нажмите для просмотра прикрепленного файла
Нажмите для просмотра прикрепленного файла
UPD: Исправил ошибки.. biggrin.gif

То есть, искомый интеграл равен:

I(ω) = pi*[1- cos(ω)]/ω.


Спасибо за помощь.
Тоже нашел ответ в справочнике 1974г.
К стати, я правильно понял, что интеграл по полуокружности на самом деле брать не надо, он в 2 раза меньше, чем интеграл по окружности, и его можно через вычет получить?
thermit
Цитата(Дмитрий_Б @ Jul 18 2018, 17:23) *
Спасибо за помощь.
Тоже нашел ответ в справочнике 1974г.


Вообще-то в институтах даже я, троечник, получил свою тройку на экзамене по тфкп только за то, что бодро решил похожий интрегал в присутствии экзаменатора. Это реально примитив.
blackfin
Цитата(thermit @ Jul 18 2018, 17:37) *
.. Это реально примитив.

Так, если бы не посредственности, был бы у вас повод заявить миру о своей гениальности?.. biggrin.gif

Цитата(Дмитрий_Б @ Jul 18 2018, 17:23) *
Кстати, я правильно понял, что интеграл по полуокружности на самом деле брать не надо, он в 2 раза меньше, чем интеграл по окружности, и его можно через вычет получить?

Да, "интеграл по полуокружности в два раза меньше, чем интеграл по окружности, и его можно через вычет получить"..

Можно было с самого начала выбрать контур, внутри которого вообще нет полюсов.

Но мне показалось, что будет полезно показать взаимосвязь между вычетами и интегралами вдоль вещественной оси..
thermit
Цитата(blackfin @ Jul 18 2018, 21:07) *
Так, если бы не посредственности, был бы у вас повод заявить миру о своей гениальности?.. biggrin.gif

Не. Это не мое. Я махровый троечник, читай - посредственность. А хрень про интегралы можно прочитать практически в любом учебнике по тфкп совершенно бесплатно ну и возгордиццо, если очень нужно.

Цитата
Но мне показалось, что будет полезно показать взаимосвязь между вычетами и интегралами вдоль вещественной оси..


И вот про это тоже.
Stanislav
Цитата(thermit @ Jul 18 2018, 17:37) *
Вообще-то в институтах даже я, троечник, получил свою тройку на экзамене по тфкп только за то, что бодро решил похожий интрегал в присутствии экзаменатора. Это реально примитив.
Наверное, так.
Для тех, кто что-то ещё помнит. Я, к стыду своему, уже почти не.
Хоть и "государственную" по ТФКП получил, скорей, по невезению.
"Бытие определяет сознание" (с).
Hale
я вот тоже с интегралами по контурам плохо дружил, а сейчас еще и забыл все к черту:

Цитата

А тут аттачменты отвалились и я почитать не могу :-(

По поводу Махимы (идеологический аналог Вольфрама): Может, но тупит.
Например, чтобы посчитать этот интеграл надо форсировать алгоритм БЕЗ анализа вычетов.
integrate(sin(x)/(x*(w-x)), x, minf, inf),intanalysis:false;
-(%pi*cos(w)-%pi)/w

Но я не уловил как правильно выглядит сам вывод.

==========================================

Разобрался. Интеграл решается "в лоб", без высшей математики.
Подинтегральное выражение разделяете на части, так чтобы в знаменателях было по одному иксу.
Тогда получается (cos(w)SI(x-..)+sin(w)CI(x-..)-SI(x) )/w+C, подставляете пределы, смотрите в справочник:
CI(inf)=0,
SI(inf)=%pi/2
SI(minf)=-SI(inf), отсюда pi/2 становится pi в множителе.

Никаких вычетов.

@mcheb, quad - численный интегратор. Хоть вы и подставляете туда аналитическую "функцию", в действительности y становится просто указателем на "безымянную" функцию, и Октаве глубоко пофигу как она выглядит внутри. Отсюда и ошибки. К тому же quad наименее точный интегратор из всего пакета. Инструменты для аналитической математики в Октаве есть только на предопределенный формат для подставляемых коэффициентов, и все так же фактически численные алгоритмы.
blackfin
Цитата(Hale @ Aug 3 2018, 03:44) *
Разобрался.
...
Тогда получается (cos(w)SI(x-..)+sin(w)CI(x-..)-SI(x) )/w+C, подставляете пределы, смотрите в справочник:
...
Никаких вычетов.

Можете привести подробный вывод этой формулы?

Хотелось бы понять, как вам удалось перейти от несобственного интеграла с бесконечными пределами к интегралам с переменными верхним и нижним пределами интегрирования: Si(x) и Ci(x) ?

Если используется предельный переход, то хотелось бы также увидеть его обоснование..
Hale
да нет никаких обоснований. я же дилетант и делаю все в лоб и неправильно через неопределенные интегралы

INT(sin(x)/(x*(w-x)), dx)=
INT( sin(x)/(w*x) + sin(x)/(w*(w-x)) , dx)

С первой частью все понятно, откладываем до взятия пределов.
Далее

INT( sin(x)/(w-x) , dx): замена u=w-x (пределы все равно останутся плюсминус бесконечность; чи не контур и не вектор, направления нет)

INT( sin(w-u)/u , du)= sin(w)*INT(cos(u)/u, du)-cos(w)*INT(sin(u)/u,du)

Опять, SI(±∞) и CO(±∞), значения приведены ранее. Т.е. интегральный косинус можно отбросить сразу с его множителем. Останется косинус параметра при интегральном синусе, и удвоенный инт. синус в добавке. Все это поделено на параметр в общем знаменателе.

Может грубо и неверно, но результат должен получиться ранее указанный.
blackfin
Цитата(Hale @ Aug 3 2018, 12:04) *
Опять, SI(±∞) и CO(±∞), значения приведены ранее.

Что такое "CO(±∞)" ? Определение приведите, плиз..
Дмитрий_Б
Цитата(Hale @ Aug 3 2018, 13:04) *
да нет никаких обоснований. я же дилетант и делаю все в лоб и неправильно через неопределенные интегралы

INT(sin(x)/(x*(w-x)), dx)=
INT( sin(x)/(w*x) + sin(x)/(w*(w-x)) , dx)

С первой частью все понятно, откладываем до взятия пределов.
Далее

INT( sin(x)/(w-x) , dx): замена u=w-x (пределы все равно останутся плюсминус бесконечность; чи не контур и не вектор, направления нет)

INT( sin(w-u)/u , du)= sin(w)*INT(cos(u)/u, du)-cos(w)*INT(sin(u)/u,du)

Опять, SI(±∞) и CO(±∞), значения приведены ранее. Т.е. интегральный косинус можно отбросить сразу с его множителем. Останется косинус параметра при интегральном синусе, и удвоенный инт. синус в добавке. Все это поделено на параметр в общем знаменателе.

Может грубо и неверно, но результат должен получиться ранее указанный.

Браво!
Красивый и простой вывод!
Hale
Цитата(blackfin @ Aug 3 2018, 13:14) *
Что такое "CO(±∞)" ? Определение приведите, плиз..


Вы правы. Это мое дилетантство, забыл уже университетский курс. Правильно интегральный косинус обозначают Ci(x). Ну а плюсминусбесконечность, думаю понятно.
Для просмотра полной версии этой страницы, пожалуйста, пройдите по ссылке.
Invision Power Board © 2001-2022 Invision Power Services, Inc.