Есть несколько вариантов организации тактирования UART.
Вариант 1.
Код
XT2 → SMCLK → BRCLK → |BRCLK divider| → BITCLK
Вариант 2.
Код
LFXT →
+ FLL → SMCLK → BRCLK → |BRCLK divider| → BITCLK
DCO →
Вариант 3.
Код
LFXT → ACLK
(откалиброванный по ACLK) DCO → SMCLK → BRCLK → |BRCLK divider| → BITCLK
Кварцевый генератор служит опорой, поэтому в первую очередь нужно обеспечить его функционирование. И только дождавшись когда колебания стабилизируются, можно использовать его для тактирования внутренних сигналов. Следовательно в первую очередь следует инициализировать регистры FLL_CTL0 и FLL_CTL2 (если собираетесь использовать XT2).
Колебания генератора часового кварца стабилизируются гораздо медленне, чем высокочастотного. А для вариантов 2 и 3 генератор 32768Гц к тому же является опорным. Поэтому сначала ждем именно его готовности. К тому же OFIFG нельзя будет сбросить до тех пор, пока оба кварцевых генератора и FLL не будут функционировать нормально.
Ниже привожу пример программы, которая с периодом около 100мс отсылает через UART символы из буфера и мерцает светодиодом на выводе P5.7 с частотой 1Гц.
В программе используется тактирование по варианту 2: часовой кварц и DCO, синхронизированный от него с помощью FLL. Частота DCO должна получаться 9830400Гц. SMCLK = DCO и вплоть до baudrate = 38400 делится нацело, поэтому регистр модуляции не используется. Но даже и для более высоких значений baudrate (56700, 115200) при такой частоте регистр модуляции можно не использовать. Т.к. ошибка установки baudrate будет составлять менее 0,4% что вполне допустимо. Это же замечание относится к варианту 1, когда используется ВЧ кварцевый генератор частота 16МГц.
Для варианта тактирования 1 нужно раскоментировать закоментированные строки.
Вариант 3 мне реализовывать уже было лень

Можете попробовать сами его реализовать, учитывая, что имеется возможность внутренне скоммутировать ACLK на вход захвата CCI2B TimerA. Это указано в таблице
TIMER_A3 SIGNAL CONNECTIONS в datasheet MSP430F47197. Пример подстройки DCO для такого способоа где-то был в примерах исходников от TI по-моему. Частота DCO программно корректируется до тех пор, пока отношение частот DCO и 32768Гц (полученное с помощью схемы захвата TimerA) не будет равно заданному.
CODE
#include <msp430x471x7.h>
#include <stdint.h>
#define FREQMCLK 9830400UL //MCLK
#define FREQSMCLK 9830400UL //SMCLK
//#define FREQSMCLK 16000000UL //SMCLK
#define FREQACLK 32768UL //ACLK
#define BAUDRATE 9600UL //baudrate
#define TICK_MS_ADDVAL 100U //инкремент таймера тиков [мс]
#define BLINK_TIME_MS 500U //полупериод мерцания LED [мс]
int __low_level_init(void)
{ WDTCTL = WDTPW | WDTHOLD; //останов WDTimer
return 1;
}
uint16_t tick_ms; //счетчик миллисекунд
uint8_t uart_buf[]={'0','1','2','3','4','5','6','7','8','9','\n','\r'};//буфер UART
void main(void)
{ uint16_t tickStamp, idx;
uint32_t lTmp;
//Инициализация системы тактирования
FLL_CTL1 = XT2OFF; //D=2, MCLK=fDCOCLK/D, SMCLK=fDCOCLK/D, ACLK=LFXT/1, XT2=off
// FLL_CTL1 = 0; //D=2, MCLK=fDCOCLK/D, SMCLK=fDCOCLK/D, ACLK=LFXT/1
FLL_CTL2 = XT2S1; //для работы XT2=16МГц
FLL_CTL0 = XCAP11PF; //XT1=LF, DCO/D, XCAP=11пФ
while ((FLL_CTL0 & LFOF) != 0); //ждем готовности генератора 32768Гц
// while ((FLL_CTL0 & XT2OF) != 0); //ждем готовности генератора 16МГц
SCFI0 = FLLD_4 | FN_2; //D=4, fDCOCLK = 1.4-12MHz
SCFQCTL = SCFQ_M + (75U-1U); //fDCOCLK=32768*(75)*4=9830400Гц, DCO=fDCOCLK/4
while ((FLL_CTL0 & DCOF) != 0); //ждем готовности FLL
FLL_CTL0 |= DCOPLUS; //MCLK=DCO/1, SMCLK=DCO/1
// FLL_CTL1 |= SELS; //MCLK=DCO, SMCLK=XT2, ACLK=LFXT/1
do
{ IFG1 &= OFIFG;
} while ((IFG1&OFIFG) != 0); //ждем готовности всей системы тактирования
//Инициализация UART
UCA1CTL1 |= UCSWRST; //Reset USCI
UCA1CTL0 = 0; //Parity=disable, 8bit, 1stop-bit
UCA1CTL1 = UCSSEL_2 | UCSWRST; //BRCLK=SMCLK
lTmp=FREQSMCLK/BAUDRATE;
UCA1BR1 = (uint8_t)(lTmp>>8UL); //
UCA1BR0 = (uint8_t)(lTmp); //BITCLK=BRCLK/(UCAxBR1*256+UCAxBR0)
UCA1MCTL = 0; //регистр модуляции
UCA1STAT = 0; //сброс всех битов ощибок
UCA1IRTCTL = 0; //IRDA disable
UCA1CTL1 &= ~UCSWRST;
P1SEL |= BIT6 | BIT7; //P1.6 = USCI TXD, P1.7 = USCI RXD
UC1IE &= ~(UCA1TXIE | UCA1RXIE); //запретим прерывания USCI_A1
UC1IFG &= ~UCA1RXIFG; //сбросим флаг готовности буфера приемника
UC1IFG |= UCA1TXIFG; //установим флаг готовность буфера передатчика
//Иницализация TimerA
TACTL = TASSEL_1 | TACLR; //TACLK=ACLK/1
TACCR0=(uint16_t)(FREQACLK/10UL); //период около 100мс
TACCTL0 = CCIE; //разр. прерывание от CCR0
TACCTL1 = 0;
TACCTL2 = 0;
TACTL |= MC_1; //запустить таймер в режиме CountUP
//Инициализация LED
P5DIR |= BIT7;
P5SEL &= ~BIT7;
P5OUT &= ~BIT7;
idx=0;
tickStamp = tick_ms; //зафиксировать временную метку
__enable_interrupt(); //разрешим прерывания
for (;;)
{ if ((tick_ms - tickStamp) >= BLINK_TIME_MS)//полупериод мерцания закончился?
{ tickStamp = tick_ms; //запомним новое значение метки времени
P5OUT ^= BIT7; //инвертируем состояние LED
}
if ((UC1IFG & UCA1TXIFG) != 0) //буфер передатчика готов?
{ UCA1TXBUF=uart_buf[idx]; //вывод текущего символа
if (idx < (sizeof(uart_buf)-1))//увеличение индекса
idx += 1;
else
idx = 0;
}
__bis_SR_register(LPM0_bits + GIE);//переход в режим энергосбережения LPM0
}
}
#pragma vector=TIMERA0_VECTOR
#pragma type_attribute=__interrupt
void TimerA0_ISR (void)
{
tick_ms += TICK_MS_ADDVAL; //инкремент счтечика тиков [мс]
__bic_SR_register_on_exit(LPM0_bits);//выход из режима энергосбережения при выходе из прерывания
}
Программа на железе не проверялась ввиду отсутствия оного.
Update. Исправил форматирование исходника. Изменил команду выхода из режима энергосбережения в прерывании. В принципе код генерился одинаковый, но так корректнее.