Цитата(A.W.P. @ Jul 10 2012, 10:39)

Оказывается времена относятся к скорости изменения НАПРЯЖЕНИЯ сток-исток, а не ТОКА стока! Соответственно, получаем величины 27..30 В/нс-вполне достижимые значения, согласующиеся с другими источниками информации.
Естественно, т.к измерения времени переключения проводятся при фиксированном начальном токе, обычно получаемом от индуктивности(поищите схему измерения). IXYS, например, измеряет при 0.5 от импульсного максимального. Поэтому наблюдаемое изменение напряжения D-S
вначале процесса зависит от выходной емкости полевика, а в конце - от сопротивления канала (это при включении, при выключении - наоборот). А в промежутках наблюдаем напряжение зависящее от перераспределения тока между перезарядом емкости полевика и его изменяющимся сопротивлением канала.
Почитал дальше, расстроился - блин, как все запущенно -"смешались в кучу кони, люди" .
Надо бы попинать ТС, за некорректно поставленную задачу, особенности которой проясняются на 3-5 странице постов.
Но это обычное дело. А разгребать ошибки в ответах - не хватит терпения, поэтому просто продолжу свой ответ с 32 сообщения, но теперь с учетом ответов других участников.
Для начала развею некоторые иллюзии и мифы.
Уравнение удельной объемной энергии магнитного поля
E/V=B^2/(2*u*u0) -> Объем - V=2*u*u0*E/B^2
Откуда невооруженным глазом видно, что минимальный объем получается при !!!! u=1, т.е. при отсутствии в катушке ферромагнитного сердечника. Отсюда же следует известный в электротехнике факт, что ферромагнитный сердечнок трансформатора, в основном, служит для снижения его стоимости при замене дорогой меди на более дешевое электротехническое железо. И как следствите этой замены - уменьшение индуктивности рассеяния, за счет улучшения потокосцепления при меньших количествах витков, и уменьшения тока намагничивания трансформатора за счет увеличения индуктивности первичной обмотки, а не наоборот.
Более того, если теперь рассмотреть не трансформаторы, а дроссели, то окажется, что в большинстве случаев, помимо указанных выше особенностей, ферромагнитный сердечник используется для повышения технологичности их производства и уменьшения объема и полей рассеяния, если форма дросселя отлична от тора. И не более.
Пойдем далее, напомню общеизвестный, например из термеха, факт, что энергоемкость механических систем в основном определяется удельной прочностью применяемых материалов. Это если не учитывать всякие вспомогательные устройстава - зарядные, радиаторы, охладитель итп.
Поэтому правильно спроектированные емкости и дроссели будут иметь близкие весовые характеристики, особенноесли учесть, что устройства импульсные и для расчетов можно применять динамические прочности, а не статические.
Кроме того предостерегаю от ошибки сравнения разных систем, как это сделал A.W.P., у аккумуляторов энергоемкость определяется химией процессов и по определению будет больше, но они не смогут работать при таких коротких импульсах это связано с малой подвижностью ионов.
Если же говорить об объемных удельных характеристиках, то здесь разброс будет намного больше и будет зависеть не только от применяемых материалов, но и от конкретных технических решений.
Разброс по удельным стоимостям будет еще большим, т.к. добавятся не только технические, но и технологические решения.
Поэтому для корректного анализа, ТС должен более точно определится в своих ожиданиях.
Теперь продолжение поста 32.
Понятно, что ТС соотношение витков 1:13 не устроит, ему как минимум нужно 1:100 (первичка-500В, вторичка-50 кВ).
Но проблема в том, что индуктивность первички уменьшится в (100)^2 раз и станет 0.125 нГн.
А ток накачки первички для энергии 10Дж станет равным 400кА.
Как уже тут отмечалось, с учетом ограничения импульсного тока - количество корпусов в таком ключе будет 200-400 шт.
А вот ожидаемая ТС средняя мощность потребления в 100 Вт не получится. Если учесть все потери, то в зависимости от длительности импульса накачки первички (1-10 мкс), потери энергии будут 100-1000 Дж на импульс, при полезной 10Дж. Т.е. при частоте импульсов 10Гц, средняя потребляемая мощность будет 1-10кВт.
Кроме того хочу обратить внимание, что при коротких импульсах накачки потребные импульсные характеристики емкостей, с которых идет накачка, будут близки к характеристикам в тиратронной схеме.
Поэтому если сравнивать тиратронную схему и дроссельную, то получается следуешее.
Двухобмоточный дроссель с нужными характеристиками сделать можно без особых напряжений. Его стоимость можно считать эквивалентной стоимости высоковольтного блока питания в тиратронной схеме.
Стоимость емкостей на 10 Дж в обоих схемах будет близка.
Получается, что нужно сравнивать только стоимости ключа и тиратрона. Ну и с учетом их эксплуатационных характеристик.
Т.е. Для расчета берем время жизни установки, получаем общее количество импульсов.
Определяем стоимость нужного количества тиратронов и стоимость простоя при их замене. И эту цифру сравниваем со стоимостью полевых ключей.
Можно поискать замену полевикам на быстрые тиристоры, биполярники, БСИ-ты...
Если сравнивать схему со сжатием импульсов, применение которой уже предлагалось, то нужно учитывать, что сжатие будет происходить в N-ступенях. Ступеней 5-6 в зависимости от формы выходного импульса. И в этом случае стоимость большого количества тиратронов нужно будет сравнивать со стоимостью N блоков емкостей на 10 Дж с разной степенью реактивности. Может и получится дешевле.