Итак, читаю книгу Applied Digital Signal Processing THEORY AND PRACTICE. DIMITRIS G. MANOLAKIS. Остановился на дискретном ряде Фурье. Сначала вроде всё ясно - коэффициенты ряда это амплитуды гармоник, которыми можно представить сигнал (ф-цию). Для дискретных последовательностей всё то же самое что и для непрерывных ф-ций, только не интегралы а суммы. Так в книге формулы для прямого и обратного разложения представлены на первом рисунке. Вроде всё ясно. Далее идёт пример: раскладывается сигнал x[n] = cos(w0n) = cos(2pif0n). Данную ф-цию, принимая во внимание её переодичность, раскладывают по ф-ле Эйлера, т.е.
x[n] = exp(j*2pik0n/N)/2 + exp(-j*2pik0n/N)/2 = exp(j*2pik0n/N)/2 + exp(j*2pi(N-k0)n/N)/2. Где f0 = k0/N Рис.2.
Далее в книге утверждают, что теперь исходя из формул на первом рисунке, мы имеем ф-цию разложенную в ряд Фурье. Где 1-ый и 2-ой коэффициенты равны 1/2. На рисунке 3 приведён спектр колебания для k0 = 2, N = 5. Внимание вопрос - что это значит то????!!

