Цитата(_Ivana @ Apr 8 2012, 00:54)

ОФФ: потому что я её хорошо знаю, и использую как тестовый инструмент для отладки разной математики. Она отлично выводит и таблицы и графики и псевдографики и я могу удобно просматривать любые промежуточные результаты в любом виде и формате. И всем рекомендую

Например, для первого поста потребовалась псевдографика с хитрыми непечатными символами а-ля пробел, ибо пробелы с краев отрезаются. В 1С я это сделал за минуту.
ЗЫ я понимаю что критики с претензиями предпочитают наверное матлаб или маткад, и я с ними согласен, но его надо ещё найти, поставить и освоить.
Интересно, попробовать вести бухгалтерию в Матлабе... Что-то в этом есть...
Насчет интерполяции - как тут уже отмечали, интерполяция - это нахождение непрерывной функции, желательно выраженной с помощью простых действий - умножения, деления, сложения вычитания, может быть еще извлечения корня, проходящей через заданные точки. Имея такую функцию, мы можем найти ее значения, а, следовательно, значения входного сигнала в промежуточных точках. Насколько значение функции будет соответствовать входному сигналу? Неизвестно. Теоретически возможно, что входной сигнал между отсчетами улетает до небес. Поэтому мы должны сделать предположение, что сигнал - физическая величина, следовательно обладает конечной энергией и конечным - и весьма нешироким, спектром. Иначе неуместно говорить об интерполяции сигнала, а надо говорить об математической абстракции - провести кривую через столько-то точек. Удобным методом интерполяции является полиномиальная интерполяция - нахождение полинома степени N-1, выражающего функцию, проходящую через N точек. Лагранж предложил метод нахождения таких полиномов, а Фарроу - способ построения интерполятора оптимально использующего вычислительные мощности. Но по сути - это полиномиальная интерполяция, дающая одинаковый результат независимо от способа вычисления полинома, так как такой полином существует один. Такая интерполяция хорошо подходит, в частности, к музыке, так как музыкальный сигнал - это некий набор гармонических составляющих - синусоид, параметры которых меняются относительно медленно. Эти синусоиды можно разложить в ряд Тейлора, сложить разложения, и получим, как раз, многочлен, причем невысокой степени.
Есть случаи, когда полиномиальная интерполяция малопригодна - например, при попытке интерполировать изображение, оно может потерять четкость переходов...