Цитата(Tanya @ Jan 18 2009, 23:57)

А можно вот про это все подробнее? Что такое "имеющая спектр функция", что такое интегрируемая функция, почему синус не интегрируется... для начала. А то непонятно.
Хотелось бы еще эту дежавю непрерывную перевести в дежавюшнный формат и выложить не всеобщее обозрение или осмеяние... по настроению...
Поправка принимается -
абсолютная интегрируемость функции. Интеграл от модуля функции по времени от минус бесконечности до плюс бесконечности должен иметь конечную величину. Непрерывный гармонический сигнал к таковым не относится, поэтому его нельзя представить в частотной области в виде обычного спектра Фурье.
Цитата(GetSmart @ Jan 18 2009, 23:30)

1. Я привёл формулировку ТК из учебника Баскакова. В ней же явно говорится об отсчётах. И не о функциях, а о сигналах.
Сигнал, как функция времени - он является первичным. Отсчеты - результат дискретизации, т.е. процесса. Можно дискретизировать непрерывный сигнал и не зная ТК (законом не запрещено).
Цитата(GetSmart @ Jan 18 2009, 23:30)

2. Неужели у непрерывного синусоидального сигнала нет спектра? А мужики-то не знают

А вообще, сколько людей столько и мнений. Один говорит, что в ТК интегрирование надо делать по бесконечности, то есть синусоида(ы) должны быть непрерывны для правильного результата. Другой говорит, что непрерывные синусоиды не годятся. Вы уж друг с другом определитесь чтобы было о чём спорить.
Таки не спорю, просто высказываю... Допустим, у нас синусоидальный сигнал конечной длительности, т.е. радиоимпульс. Спектр такого сигнала имеет огибающую вида sin(x)/x (симметрично относительно часто F, -F). Если увеличивать длительность импульса, ширина "лепесков" будет уменьшаться, но качественно вид спектра будет оставаться тем же. При увеличении длительности импульса до бесконечности получается качественно иной результат - спектральная плотность обнуляется везде, кроме частот -F, F, а на оных она становится равной бесконечности. Это, собственно, уже не спектр в обычном понимании, а математическая абстракция.
Цитата(GetSmart @ Jan 18 2009, 23:30)

3. Меня в принципе не особо тревожит частота Fв/2. А под сигналом я подразумеваю сумму любых частот (просто нули тоже могут быть), пускай даже в диапазоне -Fв/2<F<Fв/2. Годится?
Тогда уж не частот, а синусоидальных сигналов?