Цитата(Designer56 @ Jan 19 2009, 16:50)

У Баскакова теорема Котельникова высказывается так: " Произвольный сигнал, спектр которого не содержит частоты выше fв, Гц, может быть полностью восстановлен, если известны отсчетные значения этого сигнала, взятые через равные промежутки времени 1/(2fв) сек."
Неплохо бы составить коллекцию формулировок ТК :-)
Ф.Е.Темников и др.
"Теортеические основы информационной техники", М., "Энергия", 1971
стр. 75
Цитата
Если непрерывная функция f(t) удовлеворяет условию Дирихле (ограничена, кусочно-непрерывна и имеет конечное число экстремумов) её спектр ограничен частотой wm, то существует такой максимальный интервал, при котором имеется возможность безошибочно восстановить
и т.д.
Интервал
равен 1/2f
m (а не "не больше"), спектр не равен 0 в интервале -w
m ... w
mт.е. неравенства везде нестрогие.
Но -
имеет конечное число экстремумов явно не про синусоиду, причём даже "низкой" частоты (в этом смысле ограничение спектра строгим неравенством выглядит менее жёстким

). Это в идельном мире математики.
Дальше идёт текст про ограничения в реальной жизни от предсказуемости функций с ограниченным спектром до неограниченности спектра функций конечной длительности ("являющися носителями сообщений"), которые лень набирать (да и тут уже припоминалось) и бесконечное время работы идеального фильтра, заканчивающиеся таким:
Цитата
Приведенные замечания свидетельствуют, что применение теоремы Котельникова вызывает определённые трудности в том случае, когда она рассматривается как точное утверждение ... можно рассматривать как приближённую для функций с неограниченным спектром.
и отсылка к Железнову.
Цитата(777777 @ Jan 20 2009, 14:56)

Огласите весь списочек, пжлст ©. В каких книжках такое утверждается? Частота должна быть строго больше, хоть на миллионную долю. Если она равна, то восстановление невозможно по очевидным причинам, приведенным в посте #1
Вот я и огласил